1
|
Chen Y, Gong T, Han Q, Liu J, Chen L, Zhao J. Photochromic Film Based on a Mixed-Heteroatom-Templated Er III-Incorporated Polyoxometalate Used for Inkless Prints and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1682-1693. [PMID: 39720883 DOI: 10.1021/acsami.4c19437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Photochromic films have attracted increasing attention for their potential in information storage and photoswitchable devices. Developing novel photochromic materials is still a highly challenging topic. In this work, we successfully obtained an unprecedented mixed-heteroatom-templated ErIII-incorporated polyoxometalate [H2N(CH3)2]18Na2K2H12{Er2(H2O)10W14O43[SeTeW15O54][B-α-TeW9O33]2}2·117H2O (1) by concurrently introducing the [TeO3]2- and [SeO3]2- heteroanion templates into the Er3+/WO42- system. The most attractive feature is that this polyoxoanion of 1 consists of three kinds of polyoxometalate building units such as classical trivacant Keggin [B-α-TeW9O33]8-, rarely seen trivacant TeIV-SeIV-oriented Dawson-like [SeTeW15O54]10-, and extraordinary [W14O43]2- with an infrequent [WVIO7(WVI5O20)]18- pentagon subunit. Based on the photochromism feature of polyoxometalates in the presence of organic electron donors under light irradiation, a photochromic composite film GEL/TEG/1 was fabricated by mixing 1 with gelatin (GEL) and triethylene glycol (TEG). The GEL/TEG/1 film shows good photochromic properties under 365 nm UV irradiation. The film changed color within 15 min under UV irradiation. The photochromic properties endow the film with fast and easy "'printing'" performance. The "printed" text or pattern in the film can be erased within 35 h in an atmospheric environment at room temperature, or colored film can be quickly erased within 3 h at 60 °C and the film can be reused for printing again. Moreover, the coloration and decoloration process can be repeated for at least 10 cycles, indicating that the GEL/TEG/1 film possesses favorable cycle performance. Further, the GEL/TEG/1 film can be used for ink-free printing and anti-counterfeiting encryption. This work not only offers a workable method for constructing mixed-heteroatom-templated polyoxometalates containing different kinds of uncommon building units but also offers some significant insights into the photochromic potential applications of polyoxometalate-based materials.
Collapse
Affiliation(s)
- Yanan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiancai Liu
- School of Energy Science and Technology, Henan University, Zhengzhou, Henan 450046, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
2
|
Mahapatra M, Bourguignon M, Grignard B, Vandevenne M, Galleni M, Detrembleur C. Nonconventional Fluorescent Non-Isocyanate Polyurethane Foams for Multipurpose Sensing Applications. Angew Chem Int Ed Engl 2025; 64:e202413605. [PMID: 39297731 DOI: 10.1002/anie.202413605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Indexed: 11/03/2024]
Abstract
Fluorescent foams with interconnected pores are attractive for the detection and quantification of various products. However, many fluorescent probes are suffering from aggregation-caused fluorescence quenching in their solid/aggregated state, are costly, and/or not straightforward to incorporate in foams, limiting their utility for this application. Herein, non-isocyanate polyurethane foams, prepared by the simple water-induced self-blowing process, present a nonconventional fluorescence behaviour, i.e. they are intrinsically fluorescent with a multicolor emission without requiring ex situ traditional fluorescent probes. These foams demonstrate utility for capturing-sensing gaseous formaldehyde (an emblematic indoor air pollutant), as well as for detecting and quantifying various metal ions (Fe2+, Cu2+, Fe3+, Hg2+). They are also able to selectively sense tetracycline antibiotic in a ratiometric way with a high sensitivity. By exploiting the unique multicolor photoluminescent foam properties, a smartphone-compatible device is used for the facile antibiotic quantification. This nonconventional fluorescence behaviour is discussed experimentally and theoretically, and is mainly based on clusteroluminescence originating from multiple hydrogen bonding and hetero-atomic sub-luminophores, thus from aggregation-induced emission luminogens that are naturally present in the foams. This work illustrates that easily accessible non-conventional fluorescent NIPU foams characterized by a modular emission wavelength have an enormous potential for multiple substrates detection and quantification.
Collapse
Affiliation(s)
- Manas Mahapatra
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
| | - Maxime Bourguignon
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
| | - Bruno Grignard
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
- FRITCO2T Platform, CESAM Research Unit, University of Liege, Liege, Belgium
| | - Marylène Vandevenne
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| | - Moreno Galleni
- Laboratory of Enzymology and Protein Folding, Centre for Protein Engineering, InBioS, University of Liege, Liege, Belgium
| | - Christophe Detrembleur
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Department of Chemistry, University of Liege, Liege, Belgium
- WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| |
Collapse
|
3
|
Jiang N, Zhu CY, Li KX, Xu YH, Bryce MR. Recent Progress in Nonconventional Luminescent Macromolecules and their Applications. Macromolecules 2024; 57:5561-5577. [PMID: 38948183 PMCID: PMC11210344 DOI: 10.1021/acs.macromol.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 07/02/2024]
Abstract
Traditional π-conjugated luminescent macromolecules typically suffer from aggregation-caused quenching (ACQ) and high cytotoxicity, and they require complex synthetic processes. In contrast, nonconventional luminescent macromolecules (NCLMs) with nonconjugated structures possess excellent biocompatibility, ease of preparation, unique luminescence behavior, and emerging applications in optoelectronics, biology, and medicine. NCLMs are currently believed to produce inherent luminescence due to through-space conjugation of overlapping electron orbitals in solid/aggregate states. However, as experimental facts continue to exceed expectations or even overturn some previous assumptions, there is still controversy about the detailed luminous mechanism of NCLMs, and extensive studies are needed to further explore the mechanism. This Perspective highlights recent progress in NCLMs and classifies and summarizes these advances from the viewpoint of molecular design, mechanism exploration, applications, and challenges and prospects. The aim is to provide guidance and inspiration for the huge fundamental and practical potential of NCLMs.
Collapse
Affiliation(s)
- Nan Jiang
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Chang-Yi Zhu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Ke-Xin Li
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Yan-Hong Xu
- Key
Laboratory of Preparation and Applications of Environmental Friendly
Materials, Key Laboratory of Functional Materials Physics and Chemistry
of the Ministry of Education, Jilin Normal
University, Changchun, 130103, China
| | - Martin R. Bryce
- Department
of Chemistry, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
4
|
Li L, Zhao B, Hang G, Gao Y, Hu J, Zhang T, Zheng S. Polyhydroxyurethane and Poly(ethylene oxide) Multiblock Copolymer Networks: Crosslinking with Polysilsesquioxane, Reprocessing and Solid Polyelectrolyte Properties. Polymers (Basel) 2023; 15:4634. [PMID: 38139886 PMCID: PMC10747941 DOI: 10.3390/polym15244634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
This contribution reports the synthesis of polyhydroxyurethane (PHU)-poly(ethylene oxide) (PEO) multiblock copolymer networks crosslinked with polysilsesquioxane (PSSQ). First, the linear PHU-PEO multiblock copolymers were synthesized via the step-growth polymerization of bis(6-membered cyclic carbonate) (B6CC) with α,ω-diamino-terminated PEOs with variable molecular weights. Thereafter, the PHU-PEO copolymers were allowed to react with 3-isocyanatopropyltriethoxysilane (IPTS) to afford the derivatives bearing triethoxysilane moieties, the hydrolysis and condensation of which afforded the PHU-PEO networks crosslinked with PSSQ. It was found that the PHU-PEO networks displayed excellent reprocessing properties in the presence of trifluoromethanesulfonate [Zn(OTf)2]. Compared to the PHU networks crosslinked via the reaction of difunctional cyclic carbonate with multifunctional amines, the organic-inorganic PHU networks displayed the decreased reprocessing temperature. The metathesis of silyl ether bonds is responsible for the improved reprocessing behavior. By adding lithium trifluoromethanesulfonate (LiOTf), the PHU-PEO networks were further transformed into the solid polymer electrolytes. It was found that the crystallization of PEO chains in the crosslinked networks was significantly suppressed. The solid polymer electrolytes had the ionic conductivity as high as 7.64 × 10-5 S × cm-1 at 300 K. More importantly, the solid polymer electrolytes were recyclable; the reprocessing did not affect the ionic conductivity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Ou Y, Zhang Z, Tang Z, Yang Z, Zhang Y, Tao L, Wang T, Wang Q, Chen S. High strength, recyclable and shape memory polyhydroxyurethanes with intrinsic fluorescent properties. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Yujing Ou
- College of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 People's Republic of China
| | - Ziming Zhang
- College of Petrochemical Technology Lanzhou University of Technology Lanzhou 730050 People's Republic of China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
| | - Zhangzhang Tang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Zenghui Yang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Liming Tao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Shoubing Chen
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics Chinese Academy of Science Lanzhou 730000 People's Republic of China
- Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
6
|
Yin X, Liu H, Lin R, Liu X, Huang Z, Du J, Gu Y, Lin X, Lin W, Yi G. Synthesis and properties of semicrystalline non‐isocyanate polyurethane with tunable triple shape memory properties. J Appl Polym Sci 2023. [DOI: 10.1002/app.53705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Xingshan Yin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Huameng Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Ruijun Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Xiaochun Liu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Zhiyi Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Jiahao Du
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
| | - Yuxin Gu
- Kinte Material Technology Co., Ltd. Guangdong China
| | - Xiaofeng Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| | - Wenjing Lin
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| | - Guobin Yi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou People's Republic of China
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory) Jieyang China
| |
Collapse
|
7
|
Miao P, Jiao Z, Liu J, He M, Song G, Wei Z, Leng X, Li Y. Mechanically Robust and Chemically Recyclable Polyhydroxyurethanes from CO 2-Derived Six-Membered Cyclic Carbonates. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2246-2255. [PMID: 36563296 DOI: 10.1021/acsami.2c19251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In the current context of sustainable chemistry development and new regulations, aminolysis of cyclic carbonate is one of the most promising routes to nonisocyanate polyurethanes, also called polyhydroxyurethanes (PHU). In this study, a new kind of shape memory PHU vitrimers with outstanding mechanical properties and chemical recyclability is prepared. The monomer employed for aminolysis to form the PHUs is bis(six-membered cyclic carbonate) of 4,4'-biphenol (BCC-BP), which is synthesized by bi(1,3-diol) precursors and CO2. The synthetic strategy, isocyanate-free and employing CO2 as a building block, is environmentally friendly and suits the concept of carbon neutrality. The thermal properties, mechanical properties, and dynamic behaviors of the PHUs are explored. The maximum breaking strength and elongation at break of the resultant PHUs reach 65 MPa and 452%, respectively, exceeding other reported PHU-based materials in combined performance. Such a PHU material can also lift up a load 4700 times heavier than its own weight by a shape recovery process. Finally, the bi(1,3-diol) can be regenerated through the alcoholysis of PHUs to realize chemical recycling. This work provides a feasibility study for a green synthetic approach and for designing a novel PHU material with outstanding properties.
Collapse
Affiliation(s)
- Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Ziyue Jiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Guanjun Song
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
8
|
Li M, Lu H, Wang X, Wang Z, Pi M, Cui W, Ran R. Regulable Mixed-Solvent-Induced Phase Separation in Hydrogels for Information Encryption. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205359. [PMID: 36333111 DOI: 10.1002/smll.202205359] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The rapid progress of information technology is accompanied by plenty of information embezzlement and forgery, but developing advanced encryption technologies to ensure information security remains challenging. Phase separation commonly leads to a dramatic change in the transmittance of hydrophilic polymer networks, which is a potential method for information security but is often neglected. Here, taking the polyacrylamide (PAAm) hydrogel system as a typical example, facilely adjustable information encryption and decryption via its regulable phase separation process in ethanol/water mixed solvent, are reported. By controlling the osmotic pressure of the external and internal environment, it is demonstrated that the diffusion coefficient during deswelling and reswelling, as well as the corresponding change of transmittance of the gel, can be well controlled. Relatively high osmotic pressure leads to rapid phase separation of the initial gel but slow phase remixing of the phase-separated gel, opening the opportunity of applying the gel as a reversible information encryption device. As proof-of-concept demonstrations, several stable and reversible information encryption and decryption systems by making use of the phase separation process of the gels are designed, which are expected to inspire the development of next-generation soft devices for information technology.
Collapse
Affiliation(s)
- Min Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Honglang Lu
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaoyu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhisen Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Menghan Pi
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wei Cui
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Rong Ran
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
9
|
Clustering-triggered phosphorescence of nonconventional luminophores. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
A Versatile Strategy for Multi‐Stimuli‐Responsive Fluorescent Material Based on Cross‐Linking‐Induced Emission: Applications in Encryption. Angew Chem Int Ed Engl 2022; 61:e202208516. [DOI: 10.1002/anie.202208516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Indexed: 11/07/2022]
|
11
|
Jiang Y, Ma J, Ran Z, Zhong H, Zhang D, Hadjichristidis N. Versatile Strategy for Multi‐Stimuli‐Responsive Fluorescent Material Based on Cross‐Linking‐Induced Emission. Application in Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yu Jiang
- South-Central University for Nationalities: South-Central Minzu University School of chemistry and materials science Minzu Road Wuhan CHINA
| | - Jiahui Ma
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Ziyu Ran
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Huiqing Zhong
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Daohong Zhang
- South-Central Minzu University School of chemistry and materials science CHINA
| | - Nikos Hadjichristidis
- KAUST: King Abdullah University of Science and Technology KAUST Catalysis Center SAUDI ARABIA
| |
Collapse
|
12
|
Hu S, Chen X, Torkelson JM. Isocyanate-free, thermoplastic polyhydroxyurethane elastomers designed for cold temperatures: Influence of PDMS soft-segment chain length and hard-segment content. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Miao P, Leng X, Liu J, Song G, He M, Li Y. Regulating the Dynamic Behaviors of Transcarbamoylation-Based Vitrimers via Mono-Variation in Density of Exchangeable Hydroxyl. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pengcheng Miao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xuefei Leng
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanjun Song
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Maomao He
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science and Engineering, Liaoning Key Laboratory of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
14
|
Xu B, Yin Q, Su C, Cheng J, Zhang J, Zhao J. High-Performance Nonisocyanate Thermoplastic Polythiourethane with High Hydrogen Bond Content. ACS Macro Lett 2022; 11:517-524. [PMID: 35575343 DOI: 10.1021/acsmacrolett.2c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonisocyanate polyurethane (NIPU) has been extensively studied because of its sustainability potential. However, the low reactivity of five-membered cyclocarbonates with amines and the side reactions at higher temperatures always sacrifice the performance of NIPUs. In this work, a bisphenol-S cyclic thiocarbonate and different amino-terminated dimer-acid polyamides (DAPAs) were used to prepare nonisocyanate polythiourethanes (SPTU-DAs). Wherein bisphenol-S acts as a hard segment due to a π-π package, plentiful hydrogen bonds introduced by DAPA units induce crystallization and nanophase separation. They both endow the NIPUs with high mechanical performance. Meanwhile, active cyclic thiocarbonate, instead of cyclic carbonate, ensures rapid synthesis under mild conditions without side reactions. The experimental results of DSC, WAXD, and DMA confirmed the existence of crystallization of SPTU-DAs. The as-prepared thermoplastic polythiourethane has a maximum strength of more than 10 MPa, which is stronger than those of the cross-linked nonisocyanate polythiourethanes reported. It is of key significance to obtain the high performance of nonisocyanate polythiourethanes.
Collapse
Affiliation(s)
- Bowen Xu
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Qichen Yin
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Chang Su
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jue Cheng
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Junying Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Jingbo Zhao
- Key Laboratory of Carbon Fiber and Functional Polymers, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
15
|
Kim JM, Bak JM, Lim B, Jung YJ, Park BC, Park MJ, Park JM, Lee HI, Jung SH. Background color dependent photonic multilayer films for anti-counterfeiting labeling. NANOSCALE 2022; 14:5377-5383. [PMID: 35319042 DOI: 10.1039/d1nr08482h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new concept for anti-counterfeiting security films that utilize the humidity from human breath to reveal a QR code on color-tunable one-dimensional (1D) PC films is presented. The 1D PC film was fabricated on a transparent polyethylene terephthalate (PET) substrate via sequential alternate layer deposition of photo-crosslinkable poly(2-vinylnaphthalene-co-benzophenone acrylate) (P(2VN-co-BPA)) and quaternized poly(4-vinylpyridine-co-benzophenone acrylate) (P(4VP-co-BPA)) (P4QP-51%). The films exhibited remarkable color transitions with reliable reversibility and reproducibility. Films placed on a black background exhibited the full visible spectrum color in a high humidity environment. Additionally, films placed on a white background displayed three different composite colors, including yellow, magenta, and cyan. These films with vivid color transitions in a high humidity environment can be applied as anti-counterfeiting films. A hidden QR code was also laser printed on the initial PC film to enhance the film's anti-counterfeiting security capabilities. These colorimetric 1D PC films can be used as anti-counterfeiting labels and for information storage.
Collapse
Affiliation(s)
- Jeong Min Kim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), 45, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| | - Jae Min Bak
- Department of Chemistry, University of Ulsan, 12, Techno saneop-ro 55beon-gil, Nam-gu, Ulsan, 44776, Republic of Korea.
| | - Bogyu Lim
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), 45, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| | - Yu Jin Jung
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), 45, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| | - Byong Chon Park
- Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea
| | - Min Ji Park
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), 45, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| | - Jong Mok Park
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), 45, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| | - Hyung-Il Lee
- Department of Chemistry, University of Ulsan, 12, Techno saneop-ro 55beon-gil, Nam-gu, Ulsan, 44776, Republic of Korea.
| | - Seo-Hyun Jung
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology (KRICT), 45, Jongga-ro, Jung-gu, Ulsan, 44429, Republic of Korea.
| |
Collapse
|
16
|
Katumo N, Li K, Richards BS, Howard IA. Dual-color dynamic anti-counterfeiting labels with persistent emission after visible excitation allowing smartphone authentication. Sci Rep 2022; 12:2100. [PMID: 35136113 PMCID: PMC8826933 DOI: 10.1038/s41598-022-05885-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/17/2022] [Indexed: 11/09/2022] Open
Abstract
A significant impediment to the deployment of anti-counterfeiting technologies is the reliance on specialized hardware. Here, anti-counterfeiting labels are developed that are both excited and detected using a smartphone. The persistent luminescence pattern and color changes on the timescale of hundreds of milliseconds to seconds. The labels can be authenticated by comparing still images from the red and green channels of video acquired at known times after flashlight excitation against expected reference patterns. The labels are based on a green-emitting SrAl2O4: Eu2+,Dy3+ (SAED), and red-emitting CaS:Eu2+ phosphors whose lifetimes are varied: (i) for SAED from 0.5 to 11.7 s by annealing the commercial material in air; and (ii) CaS:Eu2+ from 0.1 to 0.6 s by varying the dopant concentration. Examples of anti-counterfeiting labels exhibiting changing emission patterns and colors on a seven-segment display, barcode, and emoji are demonstrated. These results demonstrate that phosphors with visible absorption and tunable persistent luminescence lifetimes on the order of hundreds of milliseconds to seconds are attractive for anti-counterfeiting applications as they allow authentication to be performed using only a smartphone. Further development should allow richer color shifts and enhancement of security by embedding further covert anti-counterfeiting features.
Collapse
Affiliation(s)
- Ngei Katumo
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
| | - Kai Li
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Bryce S Richards
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany
| | - Ian A Howard
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany. .,Light Technology Institute, Karlsruhe Institute of Technology, Engesserstrasse 13, 76131, Karlsruhe, Germany.
| |
Collapse
|
17
|
Ma L, Liu J, Li C, Xiao Y, Wu S, Zhang B. A facile and economical method to synthesize a novel wide gamut fluorescent copolyester with outstanding properties. Polym Chem 2022. [DOI: 10.1039/d1py01222c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of high molecular weight copolyesters PExBTyAm were synthesized by a simple and economical two-step polycondensation method, and for the first time we found that the copolyesters exhibited an green fluorescence under 365 nm UV light.
Collapse
Affiliation(s)
- Lele Ma
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
- University of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jiajian Liu
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Chuncheng Li
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Yaonan Xiao
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Shaohua Wu
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| | - Bo Zhang
- CAS Key Laboratory of Engineering Plastics, Institute of Chemistry Chinese Academy of Sciences (ICCAS), Beijing 100190, P.R. China
| |
Collapse
|
18
|
Tang S, Yang T, Zhao Z, Zhu T, Zhang Q, Hou W, Yuan WZ. Nonconventional luminophores: characteristics, advancements and perspectives. Chem Soc Rev 2021; 50:12616-12655. [PMID: 34610056 DOI: 10.1039/d0cs01087a] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonconventional luminophores devoid of remarkable conjugates have attracted considerable attention due to their unique luminescence behaviors, updated luminescence mechanism of organics and promising applications in optoelectronic, biological and medical fields. Unlike classic luminogens consisting of molecular segments with greatly extended electron delocalization, these unorthodox luminophores generally possess nonconjugated structures based on subgroups such as ether (-O-), hydroxyl (-OH), halogens, carbonyl (CO), carboxyl (-COOH), cyano (CN), thioether (-S-), sulfoxide (SO), sulfone (OSO), phosphate, and aliphatic amine, as well as their grouped functionalities like amide, imide, anhydride and ureido. They can exhibit intriguing intrinsic luminescence, generally featuring concentration-enhanced emission, aggregation-induced emission, excitation-dependent luminescence and prevailing phosphorescence. Herein, we review the recent progress in exploring these nonconventional luminophores and discuss the current challenges and future perspectives. Notably, different mechanisms are reviewed and the clustering-triggered emission (CTE) mechanism is highlighted, which emphasizes the clustering of the above mentioned electron rich moieties and consequent electron delocalization along with conformation rigidification. The CTE mechanism seems widely applicable for diversified natural, synthetic and supramolecular systems.
Collapse
Affiliation(s)
- Saixing Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianjia Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Zihao Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Tianwen Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Qiang Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wubeiwen Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| | - Wang Zhang Yuan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Lab of Electrical Insulation and Thermal Aging, Shanghai Electrochemical Energy Devices Research Center, Shanghai Jiao Tong University, No. 800 Dongchuan Rd., Minhang, Shanghai 200240, China.
| |
Collapse
|
19
|
Xu X, He F, Yan H, Huo F, Dong H, Liu L, Zhang C, Zhao F. Nontraditional Luminescent Molecular Aggregates Encapsulated by Wormlike Silica Nanoparticles for Latent Fingerprint Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51695-51707. [PMID: 34669365 DOI: 10.1021/acsami.1c14677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phenomenon of nontraditional luminescence has attracted wide attention and curiosity of researchers due to its inexplicable photoluminescence paradigm without aromatic or extended π-systems. The present work puts forward a neotype of a light-emitting nitrogenous small molecule, namely, N-stearoyl-hydroxyproline (L-C16-Hyp), which could emit weak light in aggregation states through the restriction mechanism of intramolecular motion, exhibiting properties comparable to those of AIEgens. Using these molecular aggregates as anionic surfactant micelles to incorporate within the silica matrix, we prepared fluorescent nanoparticles (FL-NPs) by a one-pot method for expedient visualization of latent fingerprints (LFPs). The FL-NPs exhibit an excitation range from 335 to 365 nm, resulting in nontraditional luminescence observed between 410 and 440 nm. The enhanced luminescent FL-NPs may derive from the collective entities or assemblies of restricted L-C16-Hyp, which can be reasonably explicated by an effect termed as cluster-triggered emission (CTE). Theoretical calculations demonstrated that this luminescence pattern belongs to partial charge transfer, which is mainly attributed to the close interaction between the tertiary amino and adjacent carboxyl in the L-C16-Hyp structure. Moreover, some merits of FL-NPs, such as wormlike nanomorphology, stable photophysical properties, low toxicity, great adhesion to multiple substrates, easy to get raw material, an inexpensive, simple process, and rapid detection without any further modification or assistance, provide the feasibility of efficacious LFP detection. Overall, this study will provide insights into the design and application of luminescent materials with unconventional groups.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Hanwen Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fangbo Zhao
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
20
|
Yao Y, Zhu J, Shen Y, Wu H. pH-Responsive Dual-Emitting Hydroxypropyl Methylcellulose-Based Material Containing Fluorescein Isothiocyanate and CaAl 2O 4:Eu 2+,Dy 3+ Phosphors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50338-50349. [PMID: 34637258 DOI: 10.1021/acsami.1c14305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Herein, we prepared a dual-emitting cellulose film with pH response, which offers high transparency, good flexibility, and intense thermal stability. The color of the fluorescent film that changes from green to blue-green to cyan was achieved by covalently attaching organic dye fluorescein isothiocyanate (FITC), inorganic pigment NH2-CaAl2O4:Eu2+,Dy3+ (NH2-CAO), and organic-inorganic fluorescence species onto hydroxypropyl methylcellulose (HMPC) chains, respectively. Benefiting from the "anchoring" and "dilution" effects of the HMPC skeleton, HPMC-FITC and HPMC@NH2-CAO fluorescent solutions and solid-state films emit green and blue-green fluorescence at 535 and 480 nm, respectively. The obtained pH-responsive cellulose-based dual-emitting film can continuously emit cyan light at the two emission peaks of 480 and 535 nm for a long time and exhibits strong fluorescence intensity under exceedingly alkaline conditions. Moreover, the HPMC-based fluorescent solution coated on glass and fabric substrate shows strong fluorescence under 365 nm UV light stimulation. Compared with the existing cellulose-based fluorescent films, this work expands the emission wavelength range of cellulose-based fluorescent films and prolongs the luminescent time of environment-responsive fluorescent films. This provides a new way to prepare intelligent color-changing fabric-coating materials and sensitive pH sensors based on biomass.
Collapse
Affiliation(s)
- Yijun Yao
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Junxin Zhu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
| | - Yanqin Shen
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| | - Hailiang Wu
- School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China
- Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China
| |
Collapse
|
21
|
Hu R, Zhang G, Qin A, Tang BZ. Aggregation-induced emission (AIE): emerging technology based on aggregate science. PURE APPL CHEM 2021. [DOI: 10.1515/pac-2021-0503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Abstract
Functional materials serve as the basic elements for the evolution of technology. Aggregation-induced emission (AIE), as one of the top 10 emerging technologies in chemistry, is a scientific concept coined by Tang, et al. in 2001 and refers to a photophysical phenomenon with enhanced emission at the aggregate level compared to molecular states. AIE-active materials generally present new properties and performance that are absent in the molecular state, providing endless possibilities for the development of technological applications. Tremendous achievements based on AIE research have been made in theoretical exploration, material development and practical applications. In this review, AIE-active materials with triggered luminescence of circularly polarized luminescence, aggregation-induced delayed fluorescence, room-temperature phosphorescence, and clusterization-triggered emission at the aggregate level are introduced. Moreover, high-tech applications in optoelectronic devices, responsive systems, sensing and monitoring, and imaging and therapy are briefly summarized and discussed. It is expected that this review will serve as a source of inspiration for innovation in AIE research and aggregate science.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Guiquan Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology , Guangzhou 510640 , China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong , Shenzhen 518172 , China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology , Clear Water Bay, Kowloon , Hong Kong , China
| |
Collapse
|
22
|
Zhang J, He B, Hu Y, Alam P, Zhang H, Lam JWY, Tang BZ. Stimuli-Responsive AIEgens. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008071. [PMID: 34137087 DOI: 10.1002/adma.202008071] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Indexed: 06/12/2023]
Abstract
The unique advantages and the exciting application prospects of AIEgens have triggered booming developments in this area in recent years. Among them, stimuli-responsive AIEgens have received particular attention and impressive progress, and they have been demonstrated to show tremendous potential in many fields from physical chemistry to materials science and to biology and medicine. Here, the recent achievements of stimuli-responsive AIEgens in terms of seven most representative types of stimuli including force, light, polarity, temperature, electricity, ion, and pH, are summarized. Based on typical examples, it is illustrated how each type of systems realize the desired stimuli-responsive performance for various applications. The key work principles behind them are ultimately deciphered and figured out to offer new insights and guidelines for the design and engineering of the next-generation stimuli-responsive luminescent materials for more broad applications.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Yubing Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Parvej Alam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Haoke Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st Rd, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Xihu District, Hangzhou, 310027, China
- Center for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, SCUT-HKUST Joint Research Institute, South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
23
|
Wang H, Lan S, Zhang Y, Zhang L, Jia D, Zhang W, Liu C, Cao L, Wang D. Unique Property of Nontraditional Intrinsic Luminescence in the Transforming of Solution‐Hydrogel‐Solid and Its Applications. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hongyang Wang
- School of Chemical Engineering Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| | - Shuai Lan
- School of Chemical Engineering Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| | - Yu Zhang
- School of Chemical Engineering Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| | - Lu Zhang
- School of Chemical Engineering Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| | - Dandan Jia
- School of Chemical Engineering Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| | - Weiguo Zhang
- Analysis and Measurement Center Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| | - Chun Liu
- School of Chemical Engineering Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| | - Lei Cao
- School of Chemical Engineering Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| | - Dongjun Wang
- Analysis and Measurement Center Hebei Normal University of Science and Technology Qinhuangdao 066000 P. R. China
| |
Collapse
|
24
|
Bauri K, Saha B, Banerjee A, De P. Recent advances in the development and applications of nonconventional luminescent polymers. Polym Chem 2020. [DOI: 10.1039/d0py01285h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, nonconventional luminescent polymers (NLPs) have emerged as the most sought-after alternative luminescent materials. This review provides a thorough description of the importance and applications of each class of state-of-the-art NLPs.
Collapse
Affiliation(s)
- Kamal Bauri
- Department of Chemistry
- Raghunathpur College
- Raghunathpur - 723133
- India
| | - Biswajit Saha
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur - 741246
- India
| | - Arnab Banerjee
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur - 741246
- India
| | - Priyadarsi De
- Polymer Research Centre and Centre for Advanced Functional Materials
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur - 741246
- India
| |
Collapse
|