1
|
Zhao W, Lin Z, Zhang L, Lin X, Wang J, Xu S, Chen E, Wu T, Ye Y, Chen H. Bioinspired Three-Mode Photosensitive Synaptic LED for Optical Information Processing. NANO LETTERS 2024. [PMID: 39466915 DOI: 10.1021/acs.nanolett.4c04444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Inspired by human sense organs, AI is advancing toward multimodal perception, with display technology evolving into intelligent human-computer interaction tools. However, hardware networks with multimodal responses connected by different devices bring problems such as delayed information transfer and inefficiency. Thus, an innovative three-mode photosensitive synaptic LED (PSSL) is first proposed by adding a photosensitive layer indacenodithiophene-benzothiadiazole (IDTBT) to the quantum-dot light-emitting diode (QLED), switched by changing the bias voltage. The self-powered PSSL has a photoresponse range from 310 nm to 808 nm (ultraviolet-near-infrared, UV-NIR). The device exhibits a bipolar response under red and UV light at 1 V. When the voltage reaches the turn-on voltage, the PSSL device turns into a neuromorphic LED, exhibiting conductivity enhancement under red-light irradiation and suppression under UV-light irradiation. As a result, the PSSLs are expected to be applied in the field of optical encryption communication and in neuromorphic display.
Collapse
Affiliation(s)
- Wenxiao Zhao
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Zexi Lin
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Liyan Zhang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Xing Lin
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Jiawei Wang
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Sheng Xu
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Enguo Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Teng Wu
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Yun Ye
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| | - Huipeng Chen
- Institute of Optoelectronic Display, National & Local United Engineering Lab of Flat Panel Display Technology, Fuzhou University, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350100, China
| |
Collapse
|
2
|
Zhang H, Wen N, Gong X, Li X. Application of triboelectric nanogenerator (TENG) in cancer prevention and adjuvant therapy. Colloids Surf B Biointerfaces 2024; 242:114078. [PMID: 39018914 DOI: 10.1016/j.colsurfb.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
Cancer is a malignant tumor that kills about 940,000 people worldwide each year. In addition, about 30-77 % of cancer patients will experience cancer metastasis and recurrence, which can increase the cancer mortality rate without prompt treatment. According to the US Food and Drug Administration, wearable devices can detect several physiological indicators of patients to reflect their health status and adjuvant cancer treatment. Based on the triboelectric effect and electrostatic induction phenomenon, triboelectric nanopower generation (TENG) technology can convert mechanical energy into electricity and drive small electronic devices. This article reviewed the research status of TENG in the areas of cancer prevention and adjuvant therapy. TENG can be used for cancer prevention with advanced sensors. At the same time, electrical stimulation generated by TENG can also be used to help inhibit the growth of cancer cells to reduce the proliferation, recurrence, and metastasis of cancer cells. This review will promote the practical application of TENG in healthcare and provide clean and sustainable energy solutions for wearable bioelectronic systems.
Collapse
Affiliation(s)
- Haohao Zhang
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Ning Wen
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaoran Gong
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China
| | - Xue Li
- Nanjing Institute of Technology, Jiangning District, Nanjing City, Jiangsu Province 211167, China.
| |
Collapse
|
3
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Bhattacharya D, Mukherjee S, Mitra RK, Ray SK. TMDC ternary alloy-based triboelectric nanogenerators with giant photo-induced enhancement. NANOSCALE 2023; 15:17398-17408. [PMID: 37796034 DOI: 10.1039/d3nr02791k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Multifunctional self-powered energy harvesting devices have attracted significant attention for wearable, portable, IoT and healthcare devices. In this study, we report transition metal dichalcogenide (TMDC) ternary alloy (Mo0.5W0.5S2)-based self-powered photosensitive vertical triboelectric nanogenerator (TENG) devices, where the ternary alloy functions both as a triboelectric layer and as a photoabsorbing material. The scalable synthesis of the highly crystalline Mo0.5W0.5S2 ternary alloy can overcome the limitations of binary TMDCs (MoS2, WS2) by utilizing its superior optical characteristics, enabling this semiconductor-based TENG device to simultaneously exhibit photoelectric and triboelectric properties. Benefiting from visible light absorption, this vertical TENG device generates higher triboelectric outputs and exhibits excellent power harvesting properties under visible light illumination. The open circuit voltage and short circuit currents of the devices under illumination (410 nm, 525 μW cm-2) are enhanced by 62% and 253%, respectively, while in the darkness, a very high photoresponsivity of ∼45.5 V mW-1 (voltage mode) is exhibited, indicating the superior energy harvesting potential under ultralow illumination. Furthermore, the energy harvesting ability from regular human activities and the operation as artificial e-skin expands the multi-functionality of this TENG device, paving a pathway for simultaneous mechanical and photonic energy harvesting with self-powered sensing.
Collapse
Affiliation(s)
- Didhiti Bhattacharya
- S. N. Bose National Centre for Basic Science, Sector III, Block JD, Salt Lake, Kolkata - 700106, India
| | - Shubhrasish Mukherjee
- S. N. Bose National Centre for Basic Science, Sector III, Block JD, Salt Lake, Kolkata - 700106, India
| | - Rajib Kumar Mitra
- S. N. Bose National Centre for Basic Science, Sector III, Block JD, Salt Lake, Kolkata - 700106, India
| | - Samit Kumar Ray
- S. N. Bose National Centre for Basic Science, Sector III, Block JD, Salt Lake, Kolkata - 700106, India
- Indian Institute of Technology Kharagpur, 721302, India.
| |
Collapse
|
5
|
Liu Z, Tian B, Li Y, Guo Z, Zhang Z, Luo Z, Zhao L, Lin Q, Lee C, Jiang Z. Evolution of Thermoelectric Generators: From Application to Hybridization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304599. [PMID: 37544920 DOI: 10.1002/smll.202304599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Considerable thermal energy is emitted into the environment from human activities and equipment operation in the course of daily production. Accordingly, the use of thermoelectric generators (TEGs) can attract wide interest, and it shows high potential in reducing energy waste and increasing energy recovery rates. Notably, TEGs have aroused rising attention and been significantly boosted over the past few years, as the energy crisis has worsened. The reason for their progress is that thermoelectric generators can be easily attached to the surface of a heat source, converting heat energy directly into electricity in a stable and continuous manner. In this review, applications in wearable devices, and everyday life are reviewed according to the type of structure of TEGs. Meanwhile, the latest progress of TEGs' hybridization with triboelectric nanogenerator (TENG), piezoelectric nanogenerator (PENG), and photovoltaic effect is introduced. Moreover, prospects and suggestions for subsequent research work are proposed. This review suggests that hybridization of energy harvesting, and flexible high-temperature thermoelectric generators are the future trends.
Collapse
Affiliation(s)
- Zhaojun Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Bian Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Shandong Province, Yantai City, Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, China
| | - Yao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zijun Guo
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhongkai Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhifang Luo
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qijing Lin
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chengkuo Lee
- Department of Electrical & Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Neto J, Chirila R, Dahiya AS, Christou A, Shakthivel D, Dahiya R. Skin-Inspired Thermoreceptors-Based Electronic Skin for Biomimicking Thermal Pain Reflexes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201525. [PMID: 35876394 PMCID: PMC9507360 DOI: 10.1002/advs.202201525] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Indexed: 05/27/2023]
Abstract
Electronic systems possessing skin-like morphology and functionalities (electronic skins [e-skins]) have attracted considerable attention in recent years to provide sensory or haptic feedback in growing areas such as robotics, prosthetics, and interactive systems. However, the main focus thus far has been on the distributed pressure or force sensors. Herein a thermoreceptive e-skin with biological systems like functionality is presented. The soft, distributed, and highly sensitive miniaturized (≈700 µm2 ) artificial thermoreceptors (ATRs) in the e-skin are developed using an innovative fabrication route that involves dielectrophoretic assembly of oriented vanadium pentoxide nanowires at defined locations and high-resolution electrohydrodynamic printing. Inspired from the skin morphology, the ATRs are embedded in a thermally insulating soft nanosilica/epoxy polymeric layer and yet they exhibit excellent thermal sensitivity (-1.1 ± 0.3% °C-1 ), fast response (≈1s), exceptional stability (negligible hysteresis for >5 h operation), and mechanical durability (up to 10 000 bending and twisting loading cycles). Finally, the developed e-skin is integrated on the fingertip of a robotic hand and a biological system like reflex is demonstrated in response to temperature stimuli via localized learning at the hardware level.
Collapse
Affiliation(s)
- João Neto
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Radu Chirila
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Abhishek Singh Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Adamos Christou
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Dhayalan Shakthivel
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) GroupUniversity of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
7
|
Zheng X, Liu Z, Wang R, Chen A. Bending-Insensitive Intrinsically Flexible Ultraviolet Encoding Devices Based on Piezoelectric Nanogenerator-Supplied Liquid Crystalline Polymer Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202639. [PMID: 35871501 DOI: 10.1002/smll.202202639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
It is significantly challenging for state-of-the-art wearable electronics to stably monitor physicochemical signals under dynamic motions. Herein, a bending-insensitive, self-powered, and intrinsically flexible UV detector has been realized based on well-designed oriented composite fabrics, consisting of ionic liquid (IL)-containing liquid crystalline polymers (ILCPs) and piezoelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanogenerators. The novel composite fabrics establish effective UV illuminance-internal stress-electric signal conversion by coupling resistive and piezoelectric effects, with a fast response time of 190 ms. Particularly, benefiting from the intrinsic flexibility of composite fabrics, the ILCP/P(VDF-TrFE) device can maintain stable performance under dynamic bending even if the frequency is up to 2.5 Hz, with a bending insensitivity of less than 1% performance variation under 1.0 mW cm-2 UV light. Combined with the Internet of Things and the American Standard Code for Information Interchange (ASCII), wearable encoding electronics have been successfully implemented with a printing speed of 3.2 s per character under dynamic bending.
Collapse
Affiliation(s)
- Xiaoxiong Zheng
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Zhefeng Liu
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Rui Wang
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Aihua Chen
- School of Materials Science and Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| |
Collapse
|
8
|
Shooshtari L, Ghods S, Mohammadpour R, Esfandiar A, Iraji Zad A. Design of effective self-powered SnS 2/halide perovskite photo-detection system based on triboelectric nanogenerator by regarding circuit impedance. Sci Rep 2022; 12:7227. [PMID: 35508621 PMCID: PMC9068926 DOI: 10.1038/s41598-022-11327-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Self-powered detectors based on triboelectric nanogenerators (TENG) have been considered because of their capability to convert ambient mechanical energy to electrical out-put signal, instead of conventional usage of electrochemical batteries as power sources. In this regard, the self-powered photodetectors have been designed through totally two lay out called passive and active circuit. in former model, impedance matching between the TENG and the resistance of the circuit's elements is crucial, which is not investigated systematically till now. In this paper, a cost effective novel planar photodetector (PD) based on heterojunction of SnS2 sheets and Cs0.05(FA0.83 MA0.17)0.95Pb(I0.83Br0.17)3 three cationic lead iodide based perovskite (PVK) layer fabricated which powered by graphene oxide (GO) paper and Kapton based contact-separated TENG (CS-TENG). To achieve the high performance of this device, the proper range of the load resistances in the circuit regards to TENG's characterization has been studied. In the next steps, the integrated self-powered photo-detection system was designed by applying Kapton/FTO and hand/FTO TENG, separately, in the proposed impedance matching circuit. The calculated D* of integrated self-powered SnS2/PVK supplied by tapping the Kapton and hand on FTO is 2.83 × 1010 and 1.10 × 1013 Jones under the 10 mW/cm2 of white light intensity, the investigations determine that for designing significate performance of self-powered PD supplied by TENG, the existence of the load resistance with the well match amount to the utilized TENG is crucial. Our results which can be generalized to other types of passive self-powered sensors, are substantial to both academia and industry concepts.
Collapse
Affiliation(s)
- Leyla Shooshtari
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Soheil Ghods
- Physics Department, Sharif University of Technology, Tehran, 11365-9161, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| | - Ali Esfandiar
- Physics Department, Sharif University of Technology, Tehran, 11365-9161, Iran
| | - Azam Iraji Zad
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
- Physics Department, Sharif University of Technology, Tehran, 11365-9161, Iran
| |
Collapse
|
9
|
Lin H, Jiang A, Xing S, Li L, Cheng W, Li J, Miao W, Zhou X, Tian L. Advances in Self-Powered Ultraviolet Photodetectors Based on P-N Heterojunction Low-Dimensional Nanostructures. NANOMATERIALS 2022; 12:nano12060910. [PMID: 35335723 PMCID: PMC8953703 DOI: 10.3390/nano12060910] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023]
Abstract
Self-powered ultraviolet (UV) photodetectors have attracted considerable attention in recent years because of their vast applications in the military and civil fields. Among them, self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures are a very attractive research field due to combining the advantages of low-dimensional semiconductor nanostructures (such as large specific surface area, excellent carrier transmission channel, and larger photoconductive gain) with the feature of working independently without an external power source. In this review, a selection of recent developments focused on improving the performance of self-powered UV photodetectors based on p-n heterojunction low-dimensional nanostructures from different aspects are summarized. It is expected that more novel, dexterous, and intelligent photodetectors will be developed as soon as possible on the basis of these works.
Collapse
Affiliation(s)
- Haowei Lin
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, Henan University of Technology, Zhengzhou 450001, China
- Correspondence:
| | - Ao Jiang
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Shibo Xing
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Lun Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wenxi Cheng
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Jinling Li
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Wei Miao
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Xuefei Zhou
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| | - Li Tian
- School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; (A.J.); (S.X.); (L.L.); (W.C.); (J.L.); (W.M.); (X.Z.); (L.T.)
| |
Collapse
|
10
|
Chen X, Li J, Liu Y, Jiang J, Zhao C, Zhao C, Lim EG, Sun X, Wen Z. An Integrated Self-Powered Real-Time Pedometer System with Ultrafast Response and High Accuracy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:61789-61798. [PMID: 34904819 DOI: 10.1021/acsami.1c19734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As accurate step counting is a critical indicator for exercise evaluation in daily life, pedometers give a quantitative prediction of steps and analyze the amount of exercise to regulate the exercise plan. However, the merchandized pedometers still suffer from limited battery life and low accuracy. In this work, an integrated self-powered real-time pedometer system has been demonstrated. The highly integrated system contains a porous triboelectric nanogenerator (P-TENG), a data acquisition and processing (DAQP) module, and a mobile phone APP. The P-TENG works as a pressure sensor that generates electrical signals synchronized with users' footsteps, and combining it with the analogue front-end (AFE) circuit yields an ultrafast response time of 8 ms. Moreover, the combination of a mini press-to-spin-type electromagnetic generator (EMG) and a supercapacitor enables a self-powered and self-sustained operation of the entire pedometer system. This work implements the regulation of TENG signals by electronic circuit design and proposes a highly integrated system. The improved reliability and practicality provide more possibilities for wearable self-powered electronic devices.
Collapse
Affiliation(s)
- Xiaoping Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
- Department of Applied Mathematics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Junyan Li
- Department of Applied Mathematics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yina Liu
- Department of Applied Mathematics, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Jinxing Jiang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chun Zhao
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Cezhou Zhao
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Eng Gee Lim
- Department of Electrical and Electronic Engineering, School of Advanced Technology, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Xuhui Sun
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Zhen Wen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Peng M, Liu Y, Li F, Hong X, Liu Y, Wen Z, Liu Z, Ma W, Sun X. Room-Temperature Direct Synthesis of PbSe Quantum Dot Inks for High-Detectivity Near-Infrared Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51198-51204. [PMID: 34672525 DOI: 10.1021/acsami.1c13723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A PbSe colloidal quantum dot (QD) is typically a solution-processed semiconductor for near-infrared (NIR) optoelectronic applications. However, the wide application of PbSe QDs has been restricted due to their instability, which requires tedious synthesis and complicated treatments before being applied in devices. Here, we demonstrate efficient NIR photodetectors based on the room-temperature, direct synthesis of semiconducting PbSe QD inks. The in-situ passivation and the avoidance of ligand exchange endow PbSe QD photodetectors with high efficiency and low cost. By further constructing the PbSe QDs/ZnO heterostructure, the photodetectors exhibit the NIR responsivity up to 970 mA/W and a detectivity of 1.86 × 1011 Jones at 808 nm. The obtained performance is comparable to that of the state-of-the-art PbSe QD photodetectors using a complex ligand exchange strategy. Our work may pave a new way for fabricating efficient and low-cost colloidal QD photodetectors.
Collapse
Affiliation(s)
- Mingfa Peng
- School of Electronic and Information Engineering, Jiangsu Province Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, P. R. China
| | - Yang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Fei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xuekun Hong
- School of Electronic and Information Engineering, Jiangsu Province Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, P. R. China
| | - Yushen Liu
- School of Electronic and Information Engineering, Jiangsu Province Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, P. R. China
| | - Zhen Wen
- Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Zeke Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Wanli Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xuhui Sun
- Institute of Functional Nano & Soft Materials (FUNSOM), and Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
12
|
Zhang T, Xie L, Li J, Huang Z, Lei H, Liu Y, Wen Z, Xie Y, Sun X. All-in-One Self-Powered Human-Machine Interaction System for Wireless Remote Telemetry and Control of Intelligent Cars. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2711. [PMID: 34685152 PMCID: PMC8539533 DOI: 10.3390/nano11102711] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/27/2022]
Abstract
The components in traditional human-machine interaction (HMI) systems are relatively independent, distributed and low-integrated, and the wearing experience is poor when the system adopts wearable electronics for intelligent control. The continuous and stable operation of every part always poses challenges for energy supply. In this work, a triboelectric technology-based all-in-one self-powered HMI system for wireless remote telemetry and the control of intelligent cars is proposed. The dual-network crosslinking hydrogel was synthesized and wrapped with functional layers to fabricate a stretchable fibrous triboelectric nanogenerator (SF-TENG) and a supercapacitor (SF-SC), respectively. A self-charging power unit containing woven SF-TENGs, SF-SCs, and a power management circuit was exploited to harvest mechanical energy from the human body and provided power for the whole system. A smart glove designed with five SF-TENGs on the dorsum of five fingers acts as a gesture sensor to generate signal permutations. The signals were processed by the microcontroller and then wirelessly transmitted to the intelligent car for remote telemetry and control. This work is of paramount potential for the application of various terminal devices in self-powered HMI systems with high integration for wearable electronics.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; (T.Z.); (Z.H.)
- Inkjet Printing Technology Research Center, Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Lingjie Xie
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (L.X.); (J.L.); (Y.L.)
| | - Junyan Li
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (L.X.); (J.L.); (Y.L.)
| | - Zheguan Huang
- School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China; (T.Z.); (Z.H.)
- Inkjet Printing Technology Research Center, Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Hao Lei
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China;
| | - Yina Liu
- School of Science, Xi’an Jiaotong-Liverpool University, Suzhou 215123, China; (L.X.); (J.L.); (Y.L.)
| | - Zhen Wen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China;
| | - Yonglin Xie
- Inkjet Printing Technology Research Center, Printable Electronics Research Center, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xuhui Sun
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China;
| |
Collapse
|
13
|
Al Fattah MF, Khan AA, Anabestani H, Rana MM, Rassel S, Therrien J, Ban D. Sensing of ultraviolet light: a transition from conventional to self-powered photodetector. NANOSCALE 2021; 13:15526-15551. [PMID: 34522938 DOI: 10.1039/d1nr04561j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Clouds in the sky pass almost 80% of ultraviolet (UV) radiation to the earth's surface, which has a significant impact on humankind. Conventional UV photodetectors (PDs) require an external battery, which not only increases the device size but also has a limited life span and maintenance costs can be prohibitively expensive. An alternative and more technically-sound solution would be the use of self-powered UV PDs that can operate independently, eliminating the need for an external source. Although many exciting studies have been done and state-of-the-art research is underway to successfully fabricate self-powered UV PDs, periodic reviews on this topic are deemed essential so that the technology's readiness can be properly evaluated and critical challenges can be addressed in a timely manner. In this article, the key issues and most exciting developments made in recent years on built-in electric field assisted self-powered UV PDs based on p-n homojunctions, p-n heterojunctions, and Schottky junctions followed by energy harvester integrated UV PDs are extensively reviewed. Finally, a summary and comparison of different types of self-powered UV PDs as well as future challenges that need to be addressed are discussed. This review sets a foundation providing essential insights into the present status of self-powered UV PDs with which researchers can engage and deal with the major challenges.
Collapse
Affiliation(s)
- Md Fahim Al Fattah
- Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave, Waterloo, ON, Canada.
| | - Asif Abdullah Khan
- Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave, Waterloo, ON, Canada.
| | - Hossein Anabestani
- Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave, Waterloo, ON, Canada.
| | - Md Masud Rana
- Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave, Waterloo, ON, Canada.
| | - Shazzad Rassel
- Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave, Waterloo, ON, Canada.
| | - Joel Therrien
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowel, Massachusetts, USA
| | - Dayan Ban
- Department of Electrical and Computer Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave, Waterloo, ON, Canada.
- School of Physics and Electronics, Henan University, No. 1 Jinming street, Kaifeng, Henan, P. R. China
| |
Collapse
|
14
|
Lin L, Shen L, Zhang J, Xu Y, Fang Z, Müller-Buschbaum P, Zhong Q. Ionic Hydrogels Based Wearable Sensors to Monitor the Solar Radiation Dose for Vitamin D Production and Sunburn Prevention. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45995-46002. [PMID: 34524812 DOI: 10.1021/acsami.1c13027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Wearable solar radiation sensors based on ionic hydrogels are facilely prepared to simultaneously monitor the radiation dose for the production of vitamin D and the prevention of sunburn. Tetramethylethylenediamine (TEMED) is neutralized with acrylic acid (AA) to obtain tetramethylethylenediamine acrylate (TEMEDA), which is further polymerized with acrylamide by a free radical reaction. By simply adding MB or NR during the polymerization, the final obtained ionic hydrogels can indicate solar radiation. Due to the extent of discoloration, the discoloration speed of MB and NR is correlated to the radiation dose. This wearable sensor can indicate the solar radiation dose required by the human body to synthesize vitamin D through the discoloration of the ionized hydrogel of MB, whereas those with NR are able to illustrate the threshold of radiation dose that causes potential skin hurt. Therefore, the benefit and drawback of solar radiation can be well balanced by optimizing the exposure time to solar irradiation. In addition, polyurethane cross-linked with a thermoresponsive coating is used as band for this wearable sensor. Due to the hydrophilicity below its transition temperature, the cross-linked band possesses the easy cleaning capability of stains after the daily wear. Such type of wearable sensor can be broadly used for monitoring the solar radiation, especially in outdoor activities.
Collapse
Affiliation(s)
- Li Lin
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
| | - Liangen Shen
- Zhejiang Hexin Holdings Co. Ltd., 1568 Dongfang Road, 314003 Jiaxing, China
| | - Junfeng Zhang
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co. Ltd., 777 Pingnan Road, 314003 Jiaxing, China
| | - Yiyan Xu
- Zhejiang Hexin New Material Co. Ltd., 1568 Dongfang Road, 314003 Jiaxing, China
| | - Zheng Fang
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
| | - Peter Müller-Buschbaum
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany
- Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergstr. 1, 85748 Garching, Germany
| | - Qi Zhong
- Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, 928 Second Avenue, 310018 Hangzhou, China
- Technische Universität München, Physik-Department, Lehrstuhl für Funktionelle Materialien, James-Franck-Str. 1, 85748 Garching, Germany
| |
Collapse
|
15
|
Pan M, Yuan C, Liang X, Zou J, Zhang Y, Bowen C. Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. iScience 2020; 23:101682. [PMID: 33163937 PMCID: PMC7607424 DOI: 10.1016/j.isci.2020.101682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The triboelectric nanogenerator (TENG) and piezoelectric nanogenerator (PENG) are two recently developed technologies for effective harvesting of ambient mechanical energy for the creation of self-powered systems. The advantages of TENGs and PENGs which include large open-circuit output voltage, low cost, ease of fabrication, and high conversion efficiency enable their application as new flexible sensors, wearable devices, soft robotics, and machines. This perspective provides an overview of the current state of the art in triboelectric and piezoelectric devices that are used as self-powered sensors and energy harvesters for soft robots and machines; hybrid approaches that combine the advantages of both mechanisms are also discussed. To improve system performance and efficiency, the potential of providing self-powered soft systems with a degree of multifunctionality is investigated. This includes optical sensing, transparency, self-healing, water resistance, photo-luminescence, or an ability to operate in hostile environments such as low temperature, high humidity, or high strain/stretch. Finally, areas for future research directions are identified.
Collapse
Affiliation(s)
- Min Pan
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
| | - Chenggang Yuan
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
| | - Xianrong Liang
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
- National Engineering Research Centre of Novel Equipment for Polymer Processing, School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Yan Zhang
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 China
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, BA2 7AY Bath, UK
| |
Collapse
|
16
|
Zhang L, Li H, Xie Y, Guo J, Zhu Z. Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2020; 11:1394-1401. [PMID: 32974117 PMCID: PMC7492697 DOI: 10.3762/bjnano.11.123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Recently, there has been growing interest in triboelectric nanogenerators (TENGs) that can effectively convert various forms of mechanical energy input into electrical energy. In the present study, a novel Teflon/vitamin B1 powder based triboelectric nanogenerator (TVB-TENG) is proposed. Paper is utilized as a supporting platform for triboelectrification between a commercial Teflon tape and vitamin B1 powder. The measured open-circuit voltage was approximately 340 V. The TVB-TENG can be applied as a humidity sensor and exhibits a linear and reversible response to the relative humidity of the environment. Moreover, the change in relative humidity is also indicated by the change in luminosity of a set of light-emitting diodes (LEDs) integrated in the TVB-TENG system. The TVB-TENG proposed in this study illustrates a cost-effective method for portable power supply and sensing devices.
Collapse
Affiliation(s)
- Liangyi Zhang
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Networks and Cloud Computing Security of Universities in Chongqing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Huan Li
- Ocean College, Zhejiang University, Zhejiang, China
| | - Yiyuan Xie
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Networks and Cloud Computing Security of Universities in Chongqing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Jing Guo
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Networks and Cloud Computing Security of Universities in Chongqing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Zhiyuan Zhu
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
- Key Laboratory of Networks and Cloud Computing Security of Universities in Chongqing, College of Electronic and Information Engineering, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Dong B, Yang Y, Shi Q, Xu S, Sun Z, Zhu S, Zhang Z, Kwong DL, Zhou G, Ang KW, Lee C. Wearable Triboelectric-Human-Machine Interface (THMI) Using Robust Nanophotonic Readout. ACS NANO 2020; 14:8915-8930. [PMID: 32574036 DOI: 10.1021/acsnano.0c03728] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the rapid advances in wearable electronics and photonics, self-sustainable wearable systems are desired to increase service life and reduce maintenance frequency. Triboelectric technology stands out as a promising versatile technology due to its flexibility, self-sustainability, broad material availability, low cost, and good scalability. Various triboelectric-human-machine interfaces (THMIs) have been developed including interactive gloves, eye blinking/body motion-triggered interfaces, voice/breath monitors, and self-induced wireless interfaces. Nonetheless, THMIs conventionally use electrical readout and produce pulse-like signals due to the transient charge flows, leading to unstable and lossy transfer of interaction information. To address this issue, we propose a strategy by equipping THMIs with robust nanophotonic aluminum nitride (AlN) modulators for readout. The electrically capacitive nature of AlN modulators enables THMIs to work in the open-circuit condition with negligible charge flows. Meanwhile, the interaction information is transduced from THMIs' voltage to AlN modulators' optical output via the electro-optic Pockels effect. Thanks to the negligible charge flow and the high-speed optical information carrier, stable, information-lossless, and real-time THMIs are achieved. Leveraging the design flexibility of THMIs and nanophotonic readout circuits, various linear sensitivities independent of force speeds are achieved in different interaction force ranges. Toward practical applications, we develop a smart glove to realize continuous real-time robotics control and virtual/augmented reality interaction. Our work demonstrates a generic approach for developing self-sustainable HMIs with stable, information-lossless, and real-time features for wearable systems.
Collapse
Affiliation(s)
- Bowei Dong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Qiongfeng Shi
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Siyu Xu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Zhongda Sun
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Shiyang Zhu
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Zixuan Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Dim-Lee Kwong
- Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634, Singapore
| | - Guangya Zhou
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575 Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117576, Singapore
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore, 5 Engineering Drive 1, Singapore 117608, Singapore
- NUS Graduate School for Integrative Sciences & Engineering (NGS), National University of Singapore, 21 Lower Kent Ridge Road, Singapore 119077, Singapore
| |
Collapse
|