1
|
Amatya R, Joseph A, Roh GS, Benmokadem Y, Min KA, Shin MC. Long-Lasting Exendin-4-Coated Gold Nanoparticles: Synthesis and In Vivo Evaluation of Hypoglycemic Activity. Pharmaceuticals (Basel) 2024; 17:1475. [PMID: 39598387 PMCID: PMC11597054 DOI: 10.3390/ph17111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/24/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Gold nanoparticles (NPs) have drawn great attention in the area of biomedical research with their relatively safe and versatile properties. This study aimed to synthesize long-lasting exendin-4-coated gold NPs (EX-ABD-AFF-GoldNPs) and evaluate their anti-diabetic effects in vivo. METHODS In the present study, EX-ABD-AFF-GoldNPs were synthesized using a simple one-step aqueous reduction method. The physical characterization of the prepared particles verified the successful formation of the EX-ABD-AFF-GoldNPs through dynamic light scattering (DLS), transmission electron microscopy (TEM), ultraviolet-visible (UV-VIS) light spectroscopy, and Fourier transform infrared spectroscopy (FTIR). The anti-hyperglycemic and anti-obesity effects were assessed in high-fat diet (HFD)-fed obese diabetic mice. Additionally, pharmacokinetics (PK) and biodistribution studies were performed to verify the long-lasting properties. RESULTS The EX-ABD-AFF-GoldNPs were conglomerates of smaller globular-shaped particles, and the average size was 110(±14) nm, based on the TEM images. Safety assessments using Min6, HepG2, and B16F10 cell lines demonstrated low cytotoxicity, with over 80% cell viability up to the highest tested concentration of 150 μg/mL (as EX-ABD-AFF). Notably, the animal studies showed that the EX-ABD-AFF-GoldNPs exhibited significant hypoglycemic activity, comparable to the EX-ABD-AFF, in the HFD-fed mice. A 4-week treatment with EX-ABD-AFF-GoldNPs produced similar reductions in blood glucose and body weight to the EX-ABD-AFF, without any apparent toxicity. Furthermore, the PK and biodistribution study results confirmed the long-lasting properties (plasma half-life: 43.6 h) of the particles. CONCLUSIONS Overall, this study demonstrated that the preparation of therapeutic protein-loaded gold NPs is feasible and, despite their much larger size compared with the protein, EX-ABD-AFF-GoldNPs can be successfully absorbed through the subcutaneous route and show nearly equivalent hypoglycemic activity to the EX-ABD-AFF protein. Finally, this study showed that long-lasting properties could be acquired by only coating EX-ABD-AFF onto gold NPs.
Collapse
Affiliation(s)
- Reeju Amatya
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.); (A.J.)
| | - Amala Joseph
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.); (A.J.)
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Metabolic Dysfunction Liver Disease Research Center, Institute of Medical Science, College of Medicine, Gyeongsang National University, 816-15 Jinju Daero, Jinju 52727, Gyeongnam, Republic of Korea;
| | - Yassmine Benmokadem
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea;
| | - Kyoung Ah Min
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, 197 Injero, Gimhae 50834, Gyeongnam, Republic of Korea;
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, 501 Jinju Daero, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.); (A.J.)
| |
Collapse
|
2
|
Trayford C, van Rijt S. In situ modified mesoporous silica nanoparticles: synthesis, properties and theranostic applications. Biomater Sci 2024; 12:5450-5467. [PMID: 39371000 PMCID: PMC11457002 DOI: 10.1039/d4bm00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 08/29/2024] [Indexed: 10/08/2024]
Abstract
Over the last 20 years, mesoporous silica nanoparticles (MSNs) have drawn considerable attention in the biomedical field due to their large surface area, porous network, biocompatibility, and abundant modification possibilities. In situ MSN modification refers to the incorporation of materials such as alkoxysilanes, ions and nanoparticles (NPs) in the silica matrix during synthesis. Matrix modification is a popular approach for endowing MSNs with additional functionalities such as imaging properties, bioactivity, and degradability, while leaving the mesopores free for drug loading. As such, in situ modified MSNs are considered promising theranostic agents. This review provides an extensive overview of different materials and modification strategies that have been used and their effect on MSN properties. We also highlight how in situ modified MSNs have been applied in theranostic applications, oncology and regenerative medicine. We conclude with perspectives on the future outlooks and current challenges for the widespread clinical use of in situ modified MSNs.
Collapse
Affiliation(s)
- Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
| |
Collapse
|
3
|
Zhang X, van Veen S, Hadavi D, Zhao Y, Mohren R, Habibović P, Honing M, Albertazzi L, van Rijt S. DNA Nanoparticle Based 2D Biointerface to Study the Effect of Dynamic RGD Presentation on Stem Cell Adhesion and Migration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311402. [PMID: 38757547 DOI: 10.1002/smll.202311402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Indexed: 05/18/2024]
Abstract
The native extracellular matrix (ECM) undergoes constant remodeling, where adhesive ligand presentation changes over time and in space to control stem cell function. As such, it is of interest to develop 2D biointerfaces able to study these complex ligand stem-cell interactions. In this study, a novel dynamic bio interface based on DNA hybridization is developed, which can be employed to control ligand display kinetics and used to study dynamic cell-ligand interaction. In this approach, mesoporous silica nanoparticles (MSN) are functionalized with single-strand DNA (MSN-ssDNA) and spin-coated on a glass substrate to create the 2D bio interface. Cell adhesive tripeptide RGD is conjugated to complementary DNA strands (csDNA) of 9, 11, or 20 nucleotides in length, to form csDNA-RGD. The resulting 3 csDNA-RGD conjugates can hybridize with the ssDNA on the MSN surface, presenting RGD with increased ligand dissociation rates as DNA length is shortened. Slow RGD dissociation rates led to enhanced stem cell adhesion and spreading, resulting in elongated cell morphology. Cells on surfaces with slow RGD dissociation rates also exhibited higher motility, migrating in multiple directions compared to cells on surfaces with fast RGD dissociation rates. This study contributes to the existing body of knowledge on dynamic ligand-stem cell interactions.
Collapse
Affiliation(s)
- Xingzhen Zhang
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Stijn van Veen
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Darya Hadavi
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Yuandi Zhao
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Ronny Mohren
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Maarten Honing
- Maastricht Multimodal Molecular Imaging (M4i) Institute, Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, 6200 MD, The Netherlands
| | - Lorenzo Albertazzi
- Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology Inspired Regenerative Medicine, Maastricht University, Maastricht, 6200 MD, The Netherlands
| |
Collapse
|
4
|
Verdin A, Malherbe C, Eppe G. Designing SERS nanotags for profiling overexpressed surface markers on single cancer cells: A review. Talanta 2024; 276:126225. [PMID: 38749157 DOI: 10.1016/j.talanta.2024.126225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 06/14/2024]
Abstract
This review focuses on the chemical design and the use of Surface-Enhanced Raman Scattering (SERS)-active nanotags for measuring surface markers that can be overexpressed at the surface of single cancer cells. Indeed, providing analytical tools with true single-cell measurements capabilities is capital, especially since cancer research is increasingly leaning toward single-cell analysis, either to guide treatment decisions or to understand complex tumor behaviour including the single-cell heterogeneity and the appearance of treatment resistance. Over the past two decades, SERS nanotags have triggered significant interest in the scientific community owing their advantages over fluorescent tags, mainly because SERS nanotags resist photobleaching and exhibit sharper signal bands, which reduces possible spectral overlap and enables the discrimination between the SERS signals and the autofluorescence background from the sample itself. The extensive efforts invested in harnessing SERS nanotags for biomedical purposes, particularly in cancer research, highlight their potential as the next generation of optical labels for single-cell studies. The review unfolds in two main parts. The first part focuses on the structure of SERS nanotags, detailing their chemical composition and the role of each building block of the tags. The second part explores applications in measuring overexpressed surface markers on single-cells. The latter encompasses studies using single nanotags, multiplexed measurements, quantitative information extraction, monitoring treatment responses, and integrating phenotype measurements with SERS nanotags on single cells isolated from complex biological matrices. This comprehensive review anticipates SERS nanotags to persist as a pivotal technology in advancing single-cell analytical methods, particularly in the context of cancer research and personalized medicine.
Collapse
Affiliation(s)
- Alexandre Verdin
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium.
| | - Cedric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Belgium
| |
Collapse
|
5
|
Trayford C, Wilhalm A, Habibovic P, Smeets H, van Tienen F, van Rijt S. One-pot, degradable, silica nanocarriers with encapsulated oligonucleotides for mitochondrial specific targeting. DISCOVER NANO 2023; 18:161. [PMID: 38127184 PMCID: PMC10739632 DOI: 10.1186/s11671-023-03926-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Mutations in nuclear and mitochondrial genes are responsible for severe chronic disorders such as mitochondrial myopathies. Gene therapy using antisense oligonucleotides is a promising strategy to treat mitochondrial DNA (mtDNA) diseases by blocking the replication of the mutated mtDNA. However, transport vehicles are needed for intracellular, mitochondria-specific transport of oligonucleotides. Nanoparticle (NP) based vectors such as large pore mesoporous silica nanoparticles (LP) often rely on surface complexation of oligonucleotides exposing them to nucleases and limiting mitochondria targeting and controlled release ability. In this work, stable, fluorescent, hollow silica nanoparticles (HSN) that encapsulate and protect oligonucleotides in the hollow core were synthesized by a facile one-pot procedure. Both rhodamine B isothiocyanate and bis[3-(triethoxysilyl)propyl]tetrasulfide were incorporated in the HSN matrix by co-condensation to enable cell tracing, intracellular-specific degradation and controlled oligonucleotide release. We also synthesized LP as a benchmark to compare the oligonucleotide loading and release efficacy of our HSN. Mitochondria targeting was enabled by NP functionalization with cationic, lipophilic Triphenylphosphine (TPP) and, for the first time a fusogenic liposome based carrier, previously reported under the name MITO-Porter. HSN exhibited high oligonucleotide incorporation ratios and release dependent on intracellular degradation. Further, MITO-Porter capping of our NP enabled delayed, glutathione (GSH) responsive oligonucleotide release and mitochondria targeting at the same efficiency as TPP functionalized NP. Overall, our NP are promising vectors for anti-gene therapy of mtDNA disease as well as many other monogenic disorders worldwide.
Collapse
Affiliation(s)
- Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Alissa Wilhalm
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Hubert Smeets
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands
| | - Florence van Tienen
- Department of Toxicogenomics, School for Mental Health and Neuroscience, Maastricht University, PO Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| |
Collapse
|
6
|
Zhang X, Karagöz Z, Swapnasrita S, Habibovic P, Carlier A, van Rijt S. Development of Mesoporous Silica Nanoparticle-Based Films with Tunable Arginine-Glycine-Aspartate Peptide Global Density and Clustering Levels to Study Stem Cell Adhesion and Differentiation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38171-38184. [PMID: 37527490 PMCID: PMC10436245 DOI: 10.1021/acsami.3c04249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023]
Abstract
Stem cell adhesion is mediated via the binding of integrin receptors to adhesion motifs present in the extracellular matrix (ECM). The spatial organization of adhesion ligands plays an important role in stem cell integrin-mediated adhesion. In this study, we developed a series of biointerfaces using arginine-glycine-aspartate (RGD)-functionalized mesoporous silica nanoparticles (MSN-RGD) to study the effect of RGD adhesion ligand global density (ligand coverage over the surface), spacing, and RGD clustering levels on stem cell adhesion and differentiation. To prepare the biointerface, MSNs were chemically functionalized with RGD peptides via an antifouling poly(ethylene glycol) (PEG) linker. The RGD surface functionalization ratio could be controlled to create MSNs with high and low RGD ligand clustering levels. MSN films with varying RGD global densities could be created by blending different ratios of MSN-RGD and non-RGD-functionalized MSNs together. A computational simulation study was performed to analyze nanoparticle distribution and RGD spacing on the resulting surfaces to determine experimental conditions. Enhanced cell adhesion and spreading were observed when RGD global density increased from 1.06 to 5.32 nmol cm-2 using highly clustered RGD-MSN-based films. Higher RGD ligand clustering levels led to larger cell spreading and increased formation of focal adhesions. Moreover, a higher RGD ligand clustering level promoted the expression of alkaline phosphatase in hMSCs. Overall, these findings indicate that both RGD global density and clustering levels are crucial variables in regulating stem cell behaviors. This study provides important information about ligand-integrin interactions, which could be implemented into biomaterial design to achieve optimal performance of adhesive functional peptides.
Collapse
Affiliation(s)
- Xingzhen Zhang
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Zeynep Karagöz
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sangita Swapnasrita
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Pamela Habibovic
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Aurélie Carlier
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | - Sabine van Rijt
- Department of Instructive
Biomaterials Engineering MERLN Institute for Technology-Inspired Regenerative
Medicine, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| |
Collapse
|
7
|
Reddy YN, De A, Paul S, Pujari AK, Bhaumik J. In Situ Nanoarchitectonics of a MOF Hydrogel: A Self-Adhesive and pH-Responsive Smart Platform for Phototherapeutic Delivery. Biomacromolecules 2023; 24:1717-1730. [PMID: 36897993 DOI: 10.1021/acs.biomac.2c01489] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Metal-organic frameworks (MOFs) have dramatically changed the fundamentals of drug delivery, catalysis, and gas storage as a result of their porous geometry, controlled architecture, and ease of postsynthetic modification. However, the biomedical applications of MOFs still remain a less explored area due to the constraints associated with handling, utilizing, and site-specific delivery. The major drawbacks associated with the synthesis of nano-MOFs are related to the lack of control over particle size and inhomogeneous dispersion during doping. Therefore, a smart strategy for the in situ growth of a nano-metal-organic framework (nMOF) has been devised to incorporate it into a biocompatible polyacrylamide/starch hydrogel (PSH) composite for therapeutic applications. In this study, the post-treatment of zinc metal ion cross-linked PSH with the ligand solution generated the nZIF-8@PAM/starch composites (nZIF-8, nano-zeolitic imidazolate framework-8). The ZIF-8 nanocrystals thus formed have been found to be evenly dispersed throughout the composites. This newly designed nanoarchitectonics of an MOF hydrogel was found to be self-adhesive, which also exhibited improved mechanical strength, a viscoelastic nature, and a pH-responsive behavior. Taking advantage of these properties, it has been utilized as a sustained-release drug delivery platform for a potential photosensitizer drug (Rose Bengal). The drug was initially diffused into the in situ hydrogel, and then the entire scaffold was analyzed for its potential in photodynamic therapy against bacterial strains such as E. coli and B. megaterium. The Rose Bengal loaded nano-MOF hydrogel composite exhibited remarkable IC50 values within the range of 7.37 ± 0.04 and 0.51 ± 0.05 μg/mL for E. coli and B. megaterium. Further, reactive oxygen species (ROS) directed antimicrobial potential was validated using a fluorescence-based assay. This smart in situ nanoarchitectonics hydrogel platform can also serve as a potential biomaterial for topical treatment including wound healing, lesions, and melanoma.
Collapse
Affiliation(s)
- Yeddula Nikhileshwar Reddy
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Angana De
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India
| | - Shatabdi Paul
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Anil Kumar Pujari
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research, Sector 81 (Knowledge City), S.A.S Nagar, 140306 Mohali, Punjab, India
| | - Jayeeta Bhaumik
- Department of Nanomaterials and Application Technology, Center of Innovative and Applied Bioprocessing (CIAB), Department of Biotechnology (DBT), Government of India, Sector 81 (Knowledge City), S.A.S. Nagar 140306, Punjab, India.,Regional Centre for Biotechnology, Department of Biotechnology (DBT), Government of India, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| |
Collapse
|
8
|
Carreón González JL, García Casillas PE, Chapa González C. Gold Nanoparticles as Drug Carriers: The Role of Silica and PEG as Surface Coatings in Optimizing Drug Loading. MICROMACHINES 2023; 14:451. [PMID: 36838151 PMCID: PMC9965813 DOI: 10.3390/mi14020451] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The use of gold nanoparticles as drug delivery systems has received increasing attention due to their unique properties, such as their high stability and biocompatibility. However, gold nanoparticles have a high affinity for proteins, which can result in their rapid clearance from the body and limited drug loading capabilities. To address these limitations, we coated the gold nanoparticles with silica and PEG, which are known to improve the stability of nanoparticles. The synthesis of the nanoparticles was carried out using a reduction method. The nanoparticles' size, morphology, and drug loading capacity were also studied. The SEM images showed a spherical and homogeneous morphology; they also showed that the coatings increased the average size of the nanoparticles. The results of this study provide insight into the potential of gold nanoparticles coated with silica and PEG as drug delivery systems. We used ibuprofen as a model drug and found that the highest drug load occurred in PEG-coated nanoparticles and then in silica-coated nanoparticles, while the uncoated nanoparticles had a lower drug loading capacity. The coatings were found to significantly improve the stability and drug load properties of the nanoparticles, making them promising candidates for further development as targeted and controlled release drug delivery systems.
Collapse
Affiliation(s)
- José Luis Carreón González
- Grupo de Nanomedicina, Instituto de Ingenieria y Tecnología, Universidad Autónoma de Ciudad Juárez, Avenida del Charro 450, Ciudad Juárez 32310, Mexico
| | - Perla Elvia García Casillas
- Grupo de Nanomedicina, Instituto de Ingenieria y Tecnología, Universidad Autónoma de Ciudad Juárez, Avenida del Charro 450, Ciudad Juárez 32310, Mexico
- Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo 140, Saltillo 25294, Mexico
| | - Christian Chapa González
- Grupo de Nanomedicina, Instituto de Ingenieria y Tecnología, Universidad Autónoma de Ciudad Juárez, Avenida del Charro 450, Ciudad Juárez 32310, Mexico
| |
Collapse
|
9
|
Khan IM, Niazi S, Pasha I, Khan MKI, Yue L, Ye H, Mohsin A, Shoaib M, Zhang Y, Wang Z. Novel metal enhanced dual-mode fluorometric and SERS aptasensor incorporating a heterostructure nanoassembly for ultrasensitive T-2 toxin detection. J Mater Chem B 2023; 11:441-451. [PMID: 36525248 DOI: 10.1039/d2tb01701f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fluorescent gold (Au) nanostructures have emerged as burgeoning materials to fabricate nanomaterial assemblies which play a vital role in improving the detection sensitivity and specificity for various biomolecules. In this work, a fluorescence labelled (Rhodamine-B-Isothiocyanate) silica shell with Au metal core (AuNPs@PVP@RITC@SiO2) and a graphene-Au nanostar nanocomposite (rGO-AuNS) are presented as a metal enhanced fluorescence (MEF) material and Raman signal enhancer, respectively. Their composite (AuNPs@PVP@RITC@SiO2NPs/rGO-AuNS) was employed as a dual-mode fluorescence (FL) and surface-enhanced Raman scattering (SERS) nanoprobe for selective and sensitive detection of T-2 toxin. To comprehend the dual-modality, a core-shell nanostructure, AuNPs@PVP@RITC@SiO2, was functionalized with an aptamer (donor) and adsorbed on the surface of rGO-AuNS through electrostatic forces and π-π stacking which act as a FL quencher and SERS signal enhancer. When exposed to T-2 toxin, the apt-AuNPs@PVP@RITC@SiO2NPs move away from the surface of rGO-AuNS, resulting in the restoration of FL and reduction of the SERS signal. There was distinct linearity between the T-2 toxin concentration and the dual FL and SERS signals with lower limits of detection (LOD) of 85 pM and 12 pM, as compared to the previous methods, respectively. The developed FL and SERS aptasensor presented excellent recovery ratio and RSD in wheat and maize, respectively, as compared with the standard ELISA method. The complementary performances of the developed stratagem revealed a high correlation between the FL and SERS sensing modes with exquisite detection properties.
Collapse
Affiliation(s)
- Imran Mahmood Khan
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Sobia Niazi
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Imran Pasha
- Department of Food engineering, University of Agriculture, Faisalabad, Pakistan
| | | | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China
| | - Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, 212004, P. R. China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Muhammad Shoaib
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China.,Research center of Food Intelligent detection and Quality Control, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 213013, P. R. China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, P. R. China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China. .,School of Food Science and Technology, Jiangnan University, No. 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, P. R. China.,Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, P. R. China
| |
Collapse
|