1
|
Eriksson A, Kawde A, Hrachowina L, McKibbin SR, Shi Q, Borgström MT, Wågberg T, Pullerits T, Uhlig J. Synthesis of Well-Ordered Functionalized Silicon Microwires Using Displacement Talbot Lithography for Photocatalysis. ACS OMEGA 2024; 9:20623-20628. [PMID: 38737027 PMCID: PMC11079887 DOI: 10.1021/acsomega.4c03039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Metal-assisted chemical etching (MACE) is a cheap and scalable method that is commonly used to obtain silicon nano- or microwires but lacks spatial control. Herein, we present a synthesis method for producing vertical and highly periodic silicon microwires, using displacement Talbot lithography before wet etching with MACE. The functionalized periodic silicon microwires show 65% higher PEC performance and 2.3 mA/cm2 higher net photocurrent at 0 V compared to functionalized, randomly distributed microwires obtained by conventional MACE at the same potentials.
Collapse
Affiliation(s)
- Axl Eriksson
- Chemical
Physics, Department of Chemistry, Lund University, Kemicentrum Naturvetarevägen
16, Lund 223 62, Sweden
- NanoLund,
Department of Physics, Lund University, Professorsgatan 1, Lund 223 63, Sweden
| | - Anurag Kawde
- Chemical
Physics, Department of Chemistry, Lund University, Kemicentrum Naturvetarevägen
16, Lund 223 62, Sweden
- Lund
Institute of Advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, Lund 223 70, Sweden
- NanoLund,
Department of Physics, Lund University, Professorsgatan 1, Lund 223 63, Sweden
| | - Lukas Hrachowina
- NanoLund,
Department of Physics, Lund University, Professorsgatan 1, Lund 223 63, Sweden
- Solid
State Physics, Department of Physics, Lund
University, Professorsgatan 1, Lund 223 63, Sweden
| | - Sarah R. McKibbin
- NanoLund,
Department of Physics, Lund University, Professorsgatan 1, Lund 223 63, Sweden
- Solid
State Physics, Department of Physics, Lund
University, Professorsgatan 1, Lund 223 63, Sweden
| | - Qi Shi
- Chemical
Physics, Department of Chemistry, Lund University, Kemicentrum Naturvetarevägen
16, Lund 223 62, Sweden
- NanoLund,
Department of Physics, Lund University, Professorsgatan 1, Lund 223 63, Sweden
| | - Magnus T. Borgström
- NanoLund,
Department of Physics, Lund University, Professorsgatan 1, Lund 223 63, Sweden
- Solid
State Physics, Department of Physics, Lund
University, Professorsgatan 1, Lund 223 63, Sweden
| | - Thomas Wågberg
- Department
of Physics, Umeå University, Linnaeus väg 20, Umeå 907 36, Sweden
- Wallenberg
Initiative Materials Science for Sustainability, Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Tönu Pullerits
- Chemical
Physics, Department of Chemistry, Lund University, Kemicentrum Naturvetarevägen
16, Lund 223 62, Sweden
- NanoLund,
Department of Physics, Lund University, Professorsgatan 1, Lund 223 63, Sweden
| | - Jens Uhlig
- Chemical
Physics, Department of Chemistry, Lund University, Kemicentrum Naturvetarevägen
16, Lund 223 62, Sweden
- Lund
Institute of Advanced Neutron and X-ray Science, Lund University, Scheelevägen 19, Lund 223 70, Sweden
- NanoLund,
Department of Physics, Lund University, Professorsgatan 1, Lund 223 63, Sweden
| |
Collapse
|
2
|
Johansson TB, Davtyan R, Valderas-Gutiérrez J, Gonzalez Rodriguez A, Agnarsson B, Munita R, Fioretos T, Lilljebjörn H, Linke H, Höök F, Prinz CN. Sub-Nanomolar Detection of Oligonucleotides Using Molecular Beacons Immobilized on Lightguiding Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:453. [PMID: 38470783 DOI: 10.3390/nano14050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024]
Abstract
The detection of oligonucleotides is a central step in many biomedical investigations. The most commonly used methods for detecting oligonucleotides often require concentration and amplification before detection. Therefore, developing detection methods with a direct read-out would be beneficial. Although commonly used for the detection of amplified oligonucleotides, fluorescent molecular beacons have been proposed for such direct detection. However, the reported limits of detection using molecular beacons are relatively high, ranging from 100 nM to a few µM, primarily limited by the beacon fluorescence background. In this study, we enhanced the relative signal contrast between hybridized and non-hybridized states of the beacons by immobilizing them on lightguiding nanowires. Upon hybridization to a complementary oligonucleotide, the fluorescence from the surface-bound beacon becomes coupled in the lightguiding nanowire core and is re-emitted at the nanowire tip in a narrower cone of light compared with the standard 4π emission. Prior knowledge of the nanowire positions allows for the continuous monitoring of fluorescence signals from each nanowire, which effectively facilitates the discrimination of signals arising from hybridization events against background signals. This resulted in improved signal-to-background and signal-to-noise ratios, which allowed for the direct detection of oligonucleotides at a concentration as low as 0.1 nM.
Collapse
Affiliation(s)
- Therese B Johansson
- Division of Solid State Physics, Lund University, 221 00 Lund, Sweden
- NanoLund, Lund University, 221 00 Lund, Sweden
| | - Rubina Davtyan
- Division of Solid State Physics, Lund University, 221 00 Lund, Sweden
- NanoLund, Lund University, 221 00 Lund, Sweden
| | - Julia Valderas-Gutiérrez
- Division of Solid State Physics, Lund University, 221 00 Lund, Sweden
- NanoLund, Lund University, 221 00 Lund, Sweden
| | | | - Björn Agnarsson
- Division of Nano and Biophysics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Roberto Munita
- Division of Molecular Hematology, Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Thoas Fioretos
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Henrik Lilljebjörn
- Division of Clinical Genetics, Department of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Heiner Linke
- Division of Solid State Physics, Lund University, 221 00 Lund, Sweden
- NanoLund, Lund University, 221 00 Lund, Sweden
| | - Fredrik Höök
- NanoLund, Lund University, 221 00 Lund, Sweden
- Division of Nano and Biophysics, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Christelle N Prinz
- Division of Solid State Physics, Lund University, 221 00 Lund, Sweden
- NanoLund, Lund University, 221 00 Lund, Sweden
| |
Collapse
|
3
|
Berthing T, Lard M, Danielsen PH, Abariute L, Barfod KK, Adolfsson K, Knudsen KB, Wolff H, Prinz CN, Vogel U. Pulmonary toxicity and translocation of gallium phosphide nanowires to secondary organs following pulmonary exposure in mice. J Nanobiotechnology 2023; 21:322. [PMID: 37679803 PMCID: PMC10483739 DOI: 10.1186/s12951-023-02049-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/04/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND III-V semiconductor nanowires are envisioned as being integrated in optoelectronic devices in the near future. However, the perspective of mass production of these nanowires raises concern for human safety due to their asbestos- and carbon nanotube-like properties, including their high aspect ratio shape. Indeed, III-V nanowires have similar dimensions as Mitsui-7 multi-walled carbon nanotubes, which induce lung cancer by inhalation in rats. It is therefore urgent to investigate the toxicological effects following lung exposure to III-V nanowires prior to their use in industrial production, which entails risk of human exposure. Here, female C57BL/6J mice were exposed to 2, 6, and 18 µg (0.12, 0.35 and 1.1 mg/kg bw) of gallium phosphide (III-V) nanowires (99 nm diameter, 3.7 μm length) by intratracheal instillation and the toxicity was investigated 1, 3, 28 days and 3 months after exposure. Mitsui-7 multi-walled carbon nanotubes and carbon black Printex 90 nanoparticles were used as benchmark nanomaterials. RESULTS Gallium phosphide nanowires induced genotoxicity in bronchoalveolar lavage cells and acute inflammation with eosinophilia observable both in bronchoalveolar lavage and lung tissue (1 and 3 days post-exposure). The inflammatory response was comparable to the response following exposure to Mitsui-7 multi-walled carbon nanotubes at similar dose levels. The nanowires underwent partial dissolution in the lung resulting in thinner nanowires, with an estimated in vivo half-life of 3 months. Despite the partial dissolution, nanowires were detected in lung, liver, spleen, kidney, uterus and brain 3 months after exposure. CONCLUSION Pulmonary exposure to gallium phosphide nanowires caused similar toxicological effects as the multi-walled carbon nanotube Mitsui-7.
Collapse
Affiliation(s)
- Trine Berthing
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Mercy Lard
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
| | | | - Laura Abariute
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Phase Holographic Imaging PHI AB, Lund, 224 78, Sweden
| | - Kenneth K Barfod
- The National Research Centre for the Working Environment, Copenhagen, Denmark
- Department of Food Science, Microbiology and Fermentation, University of Copenhagen, Copenhagen, Denmark
| | - Karl Adolfsson
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden
- Axis Communications AB, Lund, 223 69, Sweden
| | - Kristina B Knudsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Henrik Wolff
- Finnish Institute of Occupational Health, Helsinki, Finland
- Department of Pathology, University of Helsinki, Helsinki, Finland
| | - Christelle N Prinz
- Division of Solid State Physics and NanoLund, Lund University, Lund, 22 100, Sweden.
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark.
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark.
| |
Collapse
|
4
|
Unksov IN, Anttu N, Verardo D, Höök F, Prinz CN, Linke H. Fluorescence excitation enhancement by waveguiding nanowires. NANOSCALE ADVANCES 2023; 5:1760-1766. [PMID: 36926575 PMCID: PMC10012842 DOI: 10.1039/d2na00749e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The optical properties of vertical semiconductor nanowires can allow an enhancement of fluorescence from surface-bound fluorophores, a feature proven useful in biosensing. One of the contributing factors to the fluorescence enhancement is thought to be the local increase of the incident excitation light intensity in the vicinity of the nanowire surface, where fluorophores are located. However, this effect has not been experimentally studied in detail to date. Here, we quantify the excitation enhancement of fluorophores bound to a semiconductor nanowire surface by combining modelling with measurements of fluorescence photobleaching rate, indicative of the excitation light intensity, using epitaxially grown GaP nanowires. We study the excitation enhancement for nanowires with a diameter of 50-250 nm and show that excitation enhancement reaches a maximum for certain diameters, depending on the excitation wavelength. Furthermore, we find that the excitation enhancement decreases rapidly within tens of nanometers from the nanowire sidewall. The results can be used to design nanowire-based optical systems with exceptional sensitivities for bioanalytical applications.
Collapse
Affiliation(s)
- Ivan N Unksov
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| | - Nicklas Anttu
- Physics, Faculty of Science and Engineering, Åbo Akademi University FI-20500 Turku Finland
| | - Damiano Verardo
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
- AlignedBio AB, Medicon Village Scheeletorget 1 223 63 Lund Sweden
| | - Fredrik Höök
- Department of Physics, Chalmers University of Technology 41296 Gothenburg Sweden
| | - Christelle N Prinz
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| | - Heiner Linke
- NanoLund and Solid State Physics, Lund University Box 118 22100 Lund Sweden
| |
Collapse
|