1
|
Zhu J, Zhang Y, Sun Y, Yu F, Lu Y, Hu Q, Guo J, Zhang H, Chen T, Lian F, Wang J, Li X, Xiao J. Mesoporous Prussian blue nanoparticle neuroconduit for the biological therapy targeting oxidative stress reduction, inflammation inhibition, and nerve regeneration. J Nanobiotechnology 2025; 23:1. [PMID: 39743507 DOI: 10.1186/s12951-024-02937-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/16/2024] [Indexed: 01/04/2025] Open
Abstract
The applications of nanomaterials in regenerative medicine encompass a broad spectrum. The functional nanomaterials, such as Prussian blue and its derivative nanoparticles, exhibit potent anti-inflammatory and antioxidant properties. By combining it with the corresponding scaffold carrier, the fusion of nanomaterials and biotherapy can be achieved, thereby providing a potential avenue for clinical treatment. The present study demonstrates the fabrication of a Mesoporous Prussian blue nanoparticles (MPBN) functionalized Inverse Opal Film (IOF) neuroconduit for peripheral nerve repair through reverse replication and freeze-drying techniques. The binding of MPBN to the neuroconduit can effectively decreasing reactive oxygen species and inflammatory factors in the vicinity of the residual nerve, thereby providing protective effects on the damaged nerve. Furthermore, comprehensive behavioral, electrophysiological, and pathological analyses unequivocally substantiate the efficacy of MPBN in increasing nerve structure regeneration and ameliorating denervation-induced myopathy. Moreover, MPBN enhances the antioxidant capacity of Schwann cells by activating the AMPK/SIRT1/PGC-1 pathway. The findings suggest that MPBN, a biocompatible nanoparticle, can safeguard damaged nerves by optimizing the microenvironment surrounding nerve cells and augmenting the antioxidant capacity of nerve cells, thereby facilitating nerve regeneration and repair. This also establishes a theoretical foundation for exploring the integration and clinical translation between nanomaterials and biotherapy.
Collapse
Affiliation(s)
- Junyi Zhu
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yijia Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Yinuo Sun
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Fangzheng Yu
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yang Lu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Qianqian Hu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jiali Guo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Haijuan Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Tianling Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Feifei Lian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China
| | - Jian Wang
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jian Xiao
- Department of Hand Surgery and Peripheral Neurosurgery, Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
2
|
Zhu H, Wang Y, Xu S, Song Y, Li Y, Wang Y, Sun Q, Tong M, Huang T, Pan Y, Wang H, Xu X, Xue C. Unveiling the molecular blueprint of SKP-SCs-mediated tissue engineering-enhanced neuroregeneration. J Nanobiotechnology 2024; 22:796. [PMID: 39725969 DOI: 10.1186/s12951-024-03076-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Peripheral nerve injury poses a significant challenge to the nervous system's regenerative capacity. We previously described a novel approach to construct a chitosan/silk fibroin nerve graft with skin-derived precursor-induced Schwann cells (SKP-SCs). This graft has been shown to promote sciatic nerve regeneration and functional restoration to a level comparable to that achieved by autologous nerve grafts, as evidenced by behavioral, histological, and electrophysiological assessments. However, the underlying molecular mechanisms based on SKP-SCs mediated tissue engineering-aid regeneration remain elusive. In the present work, we systematically identified gene modules associated with the differentiation of SKPs into SCs by employing weighted gene co-expression network analysis (WGCNA). By integrating transcriptomic data from the regenerated nerve segment, we constructed a network that delineated the molecular signatures of TENG aid neuroregeneration. Subsequent quantitative PCR (qPCR) validation was performed to substantiate the WGCNA findings. Our WGCNA approach revealed a robust molecular landscape, highlighting hub genes pivotal for tissue engineering-aid regeneration. Notably, the upregulation of specific genes was observed to coincide with the acquisition of SC characteristics. The qPCR validation confirmed the expression patterns of these genes, underscoring their role in promoting neuroregeneration. The current study harnesses the power of WGCNA to elucidate the molecular blueprint governing tissue engineering-aid regeneration. The identified gene modules and validated targets offer novel insights into the cellular and molecular underpinnings of tissue engineering-augmented neuroregeneration. These findings pave the way for developing targeted therapeutics and advanced tissue engineering grafts to enhance peripheral nerve repair.
Collapse
Affiliation(s)
- Hui Zhu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China
| | - Ying Wang
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Siyuan Xu
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Yunjian Song
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
| | - Yifan Li
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
| | - Yiting Wang
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Qiuwen Sun
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Muyuan Tong
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China
| | - Tianyi Huang
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
| | - Yulin Pan
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China
| | - Hongkui Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.
| | - Xi Xu
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.
- Medical School of Nantong University, Nantong, JS, 226001, P.R. China.
- Department of Rehabilitation Medicine, Affiliated Hospital of Nantong University, Nantong, JS, 226001, P. R. China.
| | - Chengbin Xue
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, JS, 226001, P. R. China.
| |
Collapse
|
3
|
Lakshmanan M, Saini M, Nune M. Exploring the innovative application of cerium oxide nanoparticles for addressing oxidative stress in ovarian tissue regeneration. J Ovarian Res 2024; 17:241. [PMID: 39633503 PMCID: PMC11619646 DOI: 10.1186/s13048-024-01566-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
The female reproductive system dysfunction considerably affects the overall health of women and children on a global scale. Over the decade, the incidence of reproductive disorders has become a significant source of suffering for women. Infertility in women may be caused by a range of acquired and congenital abnormalities. Ovaries play a central role in the female reproductive function. Any defect in the normal functioning of these endocrine organs causes health issues and reproductive challenges extending beyond infertility, as the hormones interact with other tissues and biological processes in the body. The complex pathophysiology of ovarian disorders makes it a multifactorial disease. The key etiological factors associated with the diseases include genetic factors, hormonal imbalance, environmental and lifestyle factors, inflammatory conditions, oxidative stress, autoimmune diseases, metabolic factors, and age. Oxidative stress is a major contributor to disease development and progression affecting the oocyte quality, fertilization, embryo development, and implantation. The choice of treatment for ovarian disorders varies among individuals and has associated complications. Reproductive tissue engineering holds great promise for overcoming the challenges associated with the current therapeutic approach to tissue regeneration. Furthermore, incorporating nanotechnology into tissue engineering could offer an efficient treatment strategy. This review provides an overview of incorporating antioxidant nanomaterials for engineering ovarian tissue to address the disease recurrence and associated pathophysiology. Cerium oxide nanoparticles (CeO2 NPs) are prioritized for evaluation primarily due to their antioxidant properties. In conclusion, the review explores the potential applications of CeO2 NPs for effective and clinically significant ovarian tissue regeneration.
Collapse
Affiliation(s)
- Maya Lakshmanan
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Monika Saini
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi, 110029, India
| | - Manasa Nune
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
4
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
5
|
Zhou H, Li Z, Jing S, Wang B, Ye Z, Xiong W, Liu Y, Liu Y, Xu C, Kumeria T, He Y, Ye Q. Repair spinal cord injury with a versatile anti-oxidant and neural regenerative nanoplatform. J Nanobiotechnology 2024; 22:351. [PMID: 38902789 PMCID: PMC11188197 DOI: 10.1186/s12951-024-02610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Spinal cord injury (SCI) often results in motor and sensory deficits, or even paralysis. Due to the role of the cascade reaction, the effect of excessive reactive oxygen species (ROS) in the early and middle stages of SCI severely damage neurons, and most antioxidants cannot consistently eliminate ROS at non-toxic doses, which leads to a huge compromise in antioxidant treatment of SCI. Selenium nanoparticles (SeNPs) have excellent ROS scavenging bioactivity, but the toxicity control problem limits the therapeutic window. Here, we propose a synergistic therapeutic strategy of SeNPs encapsulated by ZIF-8 (SeNPs@ZIF-8) to obtain synergistic ROS scavenging activity. Three different spatial structures of SeNPs@ZIF-8 were synthesized and coated with ferrostatin-1, a ferroptosis inhibitor (FSZ NPs), to achieve enhanced anti-oxidant and anti-ferroptosis activity without toxicity. FSZ NPs promoted the maintenance of mitochondrial homeostasis, thereby regulating the expression of inflammatory factors and promoting the polarization of macrophages into M2 phenotype. In addition, the FSZ NPs presented strong abilities to promote neuronal maturation and axon growth through activating the WNT4-dependent pathways, while prevented glial scar formation. The current study demonstrates the powerful and versatile bioactive functions of FSZ NPs for SCI treatment and offers inspiration for other neural injury diseases.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ziwei Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ben Wang
- The Second People's Hospital of Linhai, Linhai, Zhejiang, 317000, China
| | - Zhifei Ye
- The Second People's Hospital of Linhai, Linhai, Zhejiang, 317000, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonghao Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ye Liu
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Chun Xu
- School of Dentistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Kensington, Sydney, NSW, 2052, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, 430064, Hubei, China
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- The Second People's Hospital of Linhai, Linhai, Zhejiang, 317000, China.
| |
Collapse
|
6
|
Al-Hilifi SA, Al-Ali RM, Dinh LNM, Yao Y, Agarwal V. Development of hyaluronic acid based polysaccharide-protein composite edible coatings for preservation of strawberry fruit. Int J Biol Macromol 2024; 259:128932. [PMID: 38143069 DOI: 10.1016/j.ijbiomac.2023.128932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
With the growing demand for extending the shelf-life of perishable goods such as fruits and vegetables, there is continued interest towards the development of edible coatings derived from natural sources. To avoid rapid dissolution, water insoluble polysaccharide such as chitosan has been widely explored. In this work, we developed robust hyaluronic acid-based edible polysaccharide-protein coatings by combining it (hyaluronic acid) with chitosan and gelatin to introduce additional antioxidant properties. This work is the first example of using hyaluronic acid in edible coatings for fruit preservation. The effect of developed edible composite coatings on the quality of coated strawberries was investigated over a 15 day storage period with 3-day examination intervals. The obtained results revealed hyaluronic acid dose-dependent improvement in intrinsic properties of coated strawberries including weight loss, pH, titratable acidity (TA) and total solids content (TSS). Furthermore, the inclusion of hyaluronic acid significantly enhanced the antioxidant properties of developed edible coatings as measured using total phenolic content, change in ascorbic acid content and DPPH assay prolonging the shelf-life of coated strawberries.
Collapse
Affiliation(s)
- Sawsan A Al-Hilifi
- Department of Food Science, College of Agriculture, University of Basrah, Iraq.
| | - Rawdah M Al-Ali
- Department of Food Science, College of Agriculture, University of Basrah, Iraq
| | - Le N M Dinh
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yin Yao
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Vipul Agarwal
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|