1
|
Smook LA, de Beer S. Electrical Chain Rearrangement: What Happens When Polymers in Brushes Have a Charge Gradient? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4142-4151. [PMID: 38355408 PMCID: PMC10906002 DOI: 10.1021/acs.langmuir.3c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Under the influence of electric fields, the chains in polyelectrolyte brushes can stretch and collapse, which changes the structure of the brush. Copolymer brushes with charged and uncharged monomers display a similar behavior. For pure polyelectrolyte and random copolymer brushes, the field-induced structure changes only the density of the brush and not its local composition, while the latter could be affected if charges are distributed inhomogeneously along the polymer backbone. Therefore, we systematically study the switching behavior of gradient polyelectrolyte brushes in electric fields for different solvent qualities, grafting densities, and charges per chain via coarse-grained molecular dynamics simulations. Similar to random copolymers and pure polyelectrolytes, these brushes show a mixed-phase transition: intermediate states between fully stretched and collapsed are characterized by a bimodal chain-end distribution. Additionally, we find that the total charge of the brush plays a key role in the critical field required for a complete transition. Finally, we find that gradient polyelectrolyte brushes are charge-enriched at the brush-solvent interface under stretched conditions and charge-depleted under collapsed conditions, allowing for control over the local composition and thus the surface charge of the brush due to the inhomogeneous charge along the grafted chains.
Collapse
Affiliation(s)
- Leon A. Smook
- Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Sissi de Beer
- Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
2
|
Smook LA, de Beer S. Electrostatic Fields Stimulate Absorption of Small Neutral Molecules in Gradient Polyelectrolyte Brushes. Chemphyschem 2023; 24:e202300003. [PMID: 36811215 DOI: 10.1002/cphc.202300003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Molecules can partition from a solution into a polymer coating, leading to a local enrichment. If one can control this enrichment via external stimuli, one can implement such coatings in novel separation technologies. Unfortunately, these coatings are often resource intensive as they require stimuli in the form changes of bulk solvent conditions such as acidity, temperature, or ionic strength. Electrically driven separation technology may provide an appealing alternative, as this will allow local, surface-bound stimuli instead of system-wide bulk stimuli to induce responsiveness. Therefore, we investigate via coarse grained molecular dynamics simulations the possibility of using coatings with charged moieties, specifically gradient polyelectrolyte brushes, to control the enrichment of the neutral target molecules near the surface with applied electric fields. We find that targets which interact more strongly with the brush show both more absorption and a larger modulation by electric fields. For the strongest interactions evaluated in this work, we obtained absorption changes of over 300 % between the collapsed and extended state of the coating.
Collapse
Affiliation(s)
- Leon A Smook
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
| |
Collapse
|
3
|
Chen YJ, Yu HY. Enthalpic Interactions and Solution Behaviors of Solvent-Free Polymer Brushes. Polymers (Basel) 2022; 14:polym14235237. [PMID: 36501627 PMCID: PMC9740690 DOI: 10.3390/polym14235237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022] Open
Abstract
We performed molecular dynamics simulations to characterize the role of enthalpic interaction in impacting the static and dynamic properties of solvent-free polymer brushes. The intrinsic enthalpic interaction in the simulation was introduced using different attraction strengths between distinct species. Two model systems were considered: one consisting of binary brushes of two different polymer types and the other containing a mixture of homopolymer brushes and free molecules. In the first system, we observed that, when two originally incompatible polymers were grafted to opposing surfaces, the miscibility between them was significantly enhanced. A less favorable intrinsic enthalpic interaction in the brushes resulted in a more stretched chain configuration, a lower degree of inter-brush penetration, and faster segmental relaxation. In the second system, we characterized the solvent capacity of the homopolymer brushes from variations in the energy components of the system as a function of the number of free molecules. We determined that molecular absorption was driven by the release of the entropic frustration for the grafted chains in conjunction with the chemical affinity between the solutes and polymers. The solute distribution function within the inter-wall space showed that solute-polymer mixing in the middle of the gap occurred preferentially when the enthalpic interaction was more favorable. When this was not the case, absorption was predominantly localized near the grafting surface. From the mean square displacement of the solute, we found that the brush profiles restrained the molecular diffusion perpendicular to the grafting wall; the weaker the attraction from the brush, the higher the solute mobility.
Collapse
|
4
|
Glišić I, Ritsema van Eck GC, Smook LA, de Beer S. Enhanced vapor sorption in block and random copolymer brushes. SOFT MATTER 2022; 18:8398-8405. [PMID: 36259991 PMCID: PMC9667471 DOI: 10.1039/d2sm00868h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Polymer brushes in gaseous environments absorb and adsorb vapors of favorable solvents, which makes them potentially relevant for sensing applications and separation technologies. Though significant amounts of vapor are sorbed in homopolymer brushes at high vapor pressures, at low vapor pressures sorption remains limited. In this work, we vary the structure of two-component polymer brushes and investigate the enhancement in vapor sorption at different relative vapor pressures compared to homopolymer brushes. We perform molecular dynamics simulations on two-component block and random copolymer brushes and investigate the influence of monomer miscibility and formation of high-energy interfaces between immiscible monomers on vapor sorption. Additionally, we present absorption isotherms of pure homopolymer, mixed binary brush and 2-block, 4-block, and random copolymer brushes. Based on these isotherms, we finally show that random copolymer brushes absorb more vapor than any other architecture investigated thus far. Random brushes display enhanced sorption at both high and low vapor pressures, with the largest enhancement in sorption at low vapor pressures.
Collapse
Affiliation(s)
- Ivona Glišić
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Guido C Ritsema van Eck
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Leon A Smook
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
5
|
Ritsema van Eck G, Chiappisi L, de Beer S. Fundamentals and Applications of Polymer Brushes in Air. ACS APPLIED POLYMER MATERIALS 2022; 4:3062-3087. [PMID: 35601464 PMCID: PMC9112284 DOI: 10.1021/acsapm.1c01615] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 05/22/2023]
Abstract
For several decades, high-density, end-tethered polymers, forming so-called polymer brushes, have inspired scientists to understand their properties and to translate them to applications. While earlier research focused on polymer brushes in liquids, it was recently recognized that these brushes can find application in air as well. In this review, we report on recent progress in unraveling fundamental concepts of brushes in air, such as their vapor-swelling and solvent partitioning. Moreover, we provide an overview of the plethora of applications in air (e.g., in sensing, separations or smart adhesives) where brushes can be key components. To conclude, we provide an outlook by identifying open questions and issues that, when solved, will pave the way for the large scale application of brushes in air.
Collapse
Affiliation(s)
- Guido
C. Ritsema van Eck
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Leonardo Chiappisi
- Institut
Max von Laue - Paul Langevin, 71 avenue des Martyrs, 38042 Grenoble, France
| | - Sissi de Beer
- Sustainable
Polymer Chemistry Group, Department of Molecules & Materials,
MESA+ Institute for Nanotechnology, University
of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
6
|
Ding Z, Chen C, Yu Y, de Beer S. Synthetic strategies to enhance the long-term stability of polymer brush coatings. J Mater Chem B 2022; 10:2430-2443. [DOI: 10.1039/d1tb02605d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-density, end-anchored macromolecules that form so-called polymer brushes are popular components of bio-inspired surface coatings. In a bio-memetic approach, they have been utilized to reduce friction, repel contamination and control...
Collapse
|
7
|
Smook LA, Ritsema van Eck GC, de Beer S. Vapor sorption in binary polymer brushes: The effect of the polymer-polymer interface. J Chem Phys 2021; 155:054904. [PMID: 34364330 DOI: 10.1063/5.0057065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polymer brushes attract vapors that are good solvents for polymers. This is useful in sensing and other technologies that rely on concentrating vapors for optimal performance. It was recently shown that vapor sorption can be enhanced further by incorporating two incompatible types of polymers A and B in the brushes: additional vapor adsorbs at the high-energy polymer-polymer interface in these binary brushes. In this article, we present a model that describes this enhanced sorption in binary brushes of immiscible A-B polymers. To do so, we set up a free-energy model to predict the interfacial area between the different polymer phases in binary brushes. This description is combined with Gibbs adsorption isotherms to determine the adsorption at these interfaces. We validate our model with coarse-grained molecular dynamics simulations. Moreover, based on our results, we propose design parameters (A-B chain fraction, grafting density, vapor, and A-B interaction strength) for optimal vapor absorption in coatings composed of binary brushes.
Collapse
Affiliation(s)
- Leon A Smook
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Guido C Ritsema van Eck
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Sustainable Polymer Chemistry Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|