1
|
Liao Z, Wang Q, Zhou Q, Cui Z, Wang Z, Drioli E. Preparation, Modification, and Application of Ethylene-Chlorotrifluoroethylene Copolymer Membranes. MEMBRANES 2024; 14:42. [PMID: 38392669 PMCID: PMC10890635 DOI: 10.3390/membranes14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
Ethylene-chlorotrifluoroethylene (ECTFE) was first commercialized by DuPont in 1974. Its unique chemical structure gives it high heat resistance, mechanical strength, and corrosion resistance. But also due to these properties, it is difficult to prepare a membrane from it by the nonsolvent-induced phase separation (NIPS) method. However, it can be prepared as a microfiltration membrane using the thermally induced phase separation (TIPS) method at certain temperatures and with the selection of suitable solvents, and the use of green solvents is receiving increasing attention from researchers. The surface wettability of ECTFE membranes usually needs to be modified before use to strengthen its performance to meet the application requirements, usually by graft modification and surface oxidation techniques. This paper provides an overview of the structure of ECTFE and its preparation and modification methods, as well as recent advances in its application areas and prospects for the future methods of preparing high-performance ECTFE membranes.
Collapse
Affiliation(s)
- Zhangbin Liao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Qiuyueming Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Zhaoliang Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Zhaohui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
- National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing 210009, China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Enrico Drioli
- Research Institute on Membrane Technology, ITM-CNR, Via Pietro Bucci 17/C, 87036 Rende, Italy
| |
Collapse
|
2
|
Li YC, Lee SY, Wang H, Jin FL, Park SJ. Enhanced Electrical Properties and Impact Strength of Phenolic Formaldehyde Resin Using Silanized Graphene and Ionic Liquid. ACS OMEGA 2024; 9:294-303. [PMID: 38222635 PMCID: PMC10785615 DOI: 10.1021/acsomega.3c05198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
In this study, to improve the electrical properties and impact strength of phenolic formaldehyde (PF) resin, PF-based composites were prepared by mixing graphene and the ionic liquid 3-decyl-bis(1-vinyl-1H-imidazole-3-ium-bromide) (C10[VImBr]2) via hot blending and compression-curing processes. The graphene surface was modified using a silane coupling agent. The synergistic effect of graphene and C10[VImBr]2 on the electrical properties, electromagnetic shielding efficiency, thermal stability, impact strength, and morphology of PF/graphene and PF/graphene/C10[VImBr]2 composites was then investigated. It was found that the electrical conductivity of the composites significantly increased from 2.3 × 10-10 to 4.14 × 10-3 S/m with an increase in the graphene content from 0 to 15 wt %, increasing further to 0.145 S/m with the addition of 5 wt % C10[VImBr]2. The electromagnetic shielding efficiency of the composite increased from 4.70 to 28.64 dB with the addition of 15 wt % graphene, while the impact strength of the composites rose significantly from 0.59 to 1.13 kJ/m2 with an increase in the graphene content from 0 to 15 wt %, reaching 1.53 kJ/m2 with the addition of 5 wt % C10[VImBr]2. Scanning electron microscopy images of the PF/GNP/C10[VImBr]2 composites revealed a rough morphology with numerous microcracks.
Collapse
Affiliation(s)
- Yan-Chun Li
- Department
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, People’s Republic of China
| | - Seul-Yi Lee
- Department
of Chemistry, Inha University, Inharo 100, Incheon 22212, South Korea
| | - Hong Wang
- Institute
of Petrochemical Technology, Jilin Institute
of Chemical Technology, Jilin City 132022, People’s
Republic of China
| | - Fan-Long Jin
- Department
of Polymer Materials, Jilin Institute of
Chemical Technology, Jilin City 132022, People’s
Republic of China
| | - Soo-Jin Park
- Department
of Chemistry, Inha University, Inharo 100, Incheon 22212, South Korea
| |
Collapse
|