1
|
Yin M, Zhang X, Zhang T, Bao Z, He Z. Folic Acid-Targeted Mixed Pluronic Micelles for Delivery of Triptolide. Polymers (Basel) 2024; 16:3485. [PMID: 39771337 PMCID: PMC11677570 DOI: 10.3390/polym16243485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The present study aimed to explore an ideal delivery system for triptolide (TPL) by utilizing the thin-film hydration method to prepare drug-loaded, folate-modified mixed pluronic micelles (FA-F-127/F-68-TPL). Scanning electron microscopy and atomic force microscopy showed that the drug-loaded micelles had a spherical shape with a small particle size, with an average of 30.7 nm. Cell viability experiments showed that FA-F-127/F-68-TPL significantly reduced HepG2 cell viability, exhibiting strong cytotoxicity. Its cytotoxicity was markedly enhanced compared with bare TPL. Nile red (Nr) was used as a model drug to prepare FA-F-127/F-68-Nr to further validate its tumor-targeting and cellular uptake capability. After coincubation with HepG2 cells, a multifunctional microplate reader showed that intracellular fluorescence intensity significantly increased, indicating that FA-F-127/F-68-Nr could more effectively enter the cells. A nude mouse model of subcutaneous hepatocellular carcinoma was constructed. Following tail vein injection of FA-F-127/F-68-Nr, the fluorescence imaging system showed that FA-F127/F-68-Nr could significantly target tumor tissue, and even if entering the small-sized tumor was challenging, it could be excreted through urine. Nude mice with subcutaneous hepatocellular carcinoma were treated with tail vein injections of FA-F-127/F-68-TPL (45 µg/kg) every other day for 21 days. The results showed that the growth of the transplanted tumors was significantly slowed, with no significant difference compared with bare TPL. In summary, the FA-F-127/F-68-TPL exhibits the advantages of low cost, excellent biological properties, active/passive targeting capabilities, notable cytotoxicity against liver cancer cells, and significant inhibition of transplanted hepatocellular carcinoma growth. Significantly, the FA-F-127/F-68-TPL, despite challenges in targeting tumors with an insignificant EPR effect, can be efficiently excreted via the kidneys, thereby preventing the release of the drug during prolonged circulation and potential damage to normal tissues. Therefore, FA-F-127/F-68-TPL represents a promising antitumor drug delivery system.
Collapse
Affiliation(s)
- Meizhen Yin
- Medical College, Inner Mongolia Minzu University, Tongliao 028043, China
| | | | | | | | | |
Collapse
|
2
|
Wu N, Li J, Li L, Yang L, Dong L, Shen C, Sha S, Fu Y, Dong E, Zheng F, Tan Z, Tao J. MerTK + macrophages promote melanoma progression and immunotherapy resistance through AhR-ALKAL1 activation. SCIENCE ADVANCES 2024; 10:eado8366. [PMID: 39365866 PMCID: PMC11451552 DOI: 10.1126/sciadv.ado8366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Despite our increasing understanding of macrophage heterogeneity, drivers of macrophage phenotypic and functional polarization in the microenvironment are not fully elucidated. Here, our single-cell RNA sequencing data identify a subpopulation of macrophages expressing high levels of the phagocytic receptor MER proto-oncogene tyrosine kinase (MerTK+ macrophages), which is closely associated with melanoma progression and immunotherapy resistance. Adoptive transfer of the MerTK+ macrophages into recipient mice notably accelerated tumor growth regardless of macrophage depletion. Mechanistic studies further revealed that ALK And LTK Ligand 1 (ALKAL1), a target gene of aryl hydrocarbon receptor (AhR), facilitated MerTK phosphorylation, resulting in heightened phagocytic activity of MerTK+ macrophages and their subsequent polarization toward an immunosuppressive phenotype. Specifically targeted delivery of AhR antagonist to tumor-associated macrophages with mannosylated micelles could suppress MerTK expression and improved the therapeutic efficacy of anti-programmed cell death ligand 1 therapy. Our findings shed light on the regulatory mechanism of MerTK+ macrophages and provide strategies for improving the efficacy of melanoma immunotherapy.
Collapse
Affiliation(s)
- Naming Wu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Jun Li
- Department of Dermatology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Lu Li
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Liu Yang
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Liyun Dong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Chen Shen
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Shanshan Sha
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Yangxue Fu
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Enzhu Dong
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| | - Fang Zheng
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Zheng Tan
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Juan Tao
- Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
- Hubei Engineering Research Center for Skin Repair and Theranostics, Wuhan 430022, China
| |
Collapse
|
3
|
Kudruk S, Forsyth CM, Dion MZ, Hedlund Orbeck JK, Luo J, Klein RS, Kim AH, Heimberger AB, Mirkin CA, Stegh AH, Artzi N. Multimodal neuro-nanotechnology: Challenging the existing paradigm in glioblastoma therapy. Proc Natl Acad Sci U S A 2024; 121:e2306973121. [PMID: 38346200 PMCID: PMC10895370 DOI: 10.1073/pnas.2306973121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Integrating multimodal neuro- and nanotechnology-enabled precision immunotherapies with extant systemic immunotherapies may finally provide a significant breakthrough for combatting glioblastoma (GBM). The potency of this approach lies in its ability to train the immune system to efficiently identify and eradicate cancer cells, thereby creating anti-tumor immune memory while minimizing multi-mechanistic immune suppression. A critical aspect of these therapies is the controlled, spatiotemporal delivery of structurally defined nanotherapeutics into the GBM tumor microenvironment (TME). Architectures such as spherical nucleic acids or poly(beta-amino ester)/dendrimer-based nanoparticles have shown promising results in preclinical models due to their multivalency and abilities to activate antigen-presenting cells and prime antigen-specific T cells. These nanostructures also permit systematic variation to optimize their distribution, TME accumulation, cellular uptake, and overall immunostimulatory effects. Delving deeper into the relationships between nanotherapeutic structures and their performance will accelerate nano-drug development and pave the way for the rapid clinical translation of advanced nanomedicines. In addition, the efficacy of nanotechnology-based immunotherapies may be enhanced when integrated with emerging precision surgical techniques, such as laser interstitial thermal therapy, and when combined with systemic immunotherapies, particularly inhibitors of immune-mediated checkpoints and immunosuppressive adenosine signaling. In this perspective, we highlight the potential of emerging treatment modalities, combining advances in biomedical engineering and neurotechnology development with existing immunotherapies to overcome treatment resistance and transform the management of GBM. We conclude with a call to action for researchers to leverage these technologies and accelerate their translation into the clinic.
Collapse
Affiliation(s)
- Sergej Kudruk
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Connor M. Forsyth
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Michelle Z. Dion
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA02115
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jenny K. Hedlund Orbeck
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Jingqin Luo
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Robyn S. Klein
- Department of Medicine, Washington University School of Medicine, St. Louis, MO
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO63110
- Center for Neuroimmunology and Neuroinfectious Diseases, Washington University School of Medicine, St. Louis, MO63110
| | - Albert H. Kim
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Amy B. Heimberger
- Department of Neurological Surgery, Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL60611
| | - Chad A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL60208
- International Institute for Nanotechnology, Northwestern University, Evanston, IL60208
| | - Alexander H. Stegh
- The Brain Tumor Center, Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO63110
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO63110
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Medicine, Engineering in Medicine Division, Brigham and Women’s Hospital, Harvard Medical School, Cambridge, MA02115
| |
Collapse
|
4
|
Paurević M, Šrajer Gajdošik M, Ribić R. Mannose Ligands for Mannose Receptor Targeting. Int J Mol Sci 2024; 25:1370. [PMID: 38338648 PMCID: PMC10855088 DOI: 10.3390/ijms25031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Martina Šrajer Gajdošik
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Rosana Ribić
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, HR-42000 Varaždin, Croatia
| |
Collapse
|
5
|
Cheng L, Yu J, Hao T, Wang W, Wei M, Li G. Advances in Polymeric Micelles: Responsive and Targeting Approaches for Cancer Immunotherapy in the Tumor Microenvironment. Pharmaceutics 2023; 15:2622. [PMID: 38004600 PMCID: PMC10675796 DOI: 10.3390/pharmaceutics15112622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/01/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, to treat a diverse array of cancer forms, considerable advancements have been achieved in the field of cancer immunotherapies. However, these therapies encounter multiple challenges in clinical practice, such as high immune-mediated toxicity, insufficient accumulation in cancer tissues, and undesired off-target reactions. To tackle these limitations and enhance bioavailability, polymer micelles present potential solutions by enabling precise drug delivery to the target site, thus amplifying the effectiveness of immunotherapy. This review article offers an extensive survey of recent progress in cancer immunotherapy strategies utilizing micelles. These strategies include responsive and remodeling approaches to the tumor microenvironment (TME), modulation of immunosuppressive cells within the TME, enhancement of immune checkpoint inhibitors, utilization of cancer vaccine platforms, modulation of antigen presentation, manipulation of engineered T cells, and targeting other components of the TME. Subsequently, we delve into the present state and constraints linked to the clinical utilization of polymeric micelles. Collectively, polymer micelles demonstrate excellent prospects in tumor immunotherapy by effectively addressing the challenges associated with conventional cancer immunotherapies.
Collapse
Affiliation(s)
- Lichun Cheng
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Jiankun Yu
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Tangna Hao
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Wenshuo Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Guiru Li
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian 116027, China; (L.C.); (T.H.); (W.W.)
| |
Collapse
|
6
|
Gupta A, Nadaf A, Ahmad S, Hasan N, Imran M, Sahebkar A, Jain GK, Kesharwani P, Ahmad FJ. Dasatinib: a potential tyrosine kinase inhibitor to fight against multiple cancer malignancies. Med Oncol 2023; 40:173. [PMID: 37165283 DOI: 10.1007/s12032-023-02018-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 05/12/2023]
Abstract
Dasatinib is the 2nd generation TKI (Tyrosine Kinase Inhibitor) having the potential to treat numerous forms of leukemic and cancer patients and it is 300 times more potent than imatinib. Cancer is the major cause of death globally and need to enumerate novel strategies to coping with it. Various novel therapeutics introduced into the market for ease in treating various forms of cancer. We reviewed and evaluated all the related aspects of dasatinib, which can enhance the knowledge about dasatinib therapeutics methodology, pharmacodynamic and pharmacokinetics, side effects, advantages, disadvantages, various kinds of interactions and its novel formulations as well.
Collapse
Affiliation(s)
- Akash Gupta
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Arif Nadaf
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Shadaan Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Nazeer Hasan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Imran
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Amirhossein Sahebkar
- Applied Biomedical Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gaurav Kumar Jain
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Farhan J Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
7
|
Jain N, Srinivasarao DA, Famta P, Shah S, Vambhurkar G, Shahrukh S, Singh SB, Srivastava S. The portrayal of macrophages as tools and targets: A paradigm shift in cancer management. Life Sci 2023; 316:121399. [PMID: 36646378 DOI: 10.1016/j.lfs.2023.121399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/02/2023] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
Macrophages play a major role in maintaining an organism's physiology, such as development, homeostasis, tissue repair, and immunity. These immune cells are known to be involved in tumor progression and modulation. Monocytes can be polarized to two types of macrophages (M1 macrophages and pro-tumor M2 macrophages). Through this article, we aim to emphasize the potential of targeting macrophages in order to improve current strategies for tumor management. Various strategies that target macrophages as a therapeutic target have been discussed along with ongoing clinical trials. We have discussed the role of macrophages in various stages of tumor progression epithelial-to-mesenchymal transition (EMT), invasion, maintaining the stability of circulating tumor cells (CTCs) in blood, and establishing a premetastatic niche along with the role of various cytokines and chemokines involved in these processes. Intriguingly macrophages can also serve as drug carriers due to their tumor tropism along the chemokine gradient. They surpass currently explored nanotherapeutics in tumor accumulation and circulation half-life. We have emphasized on macrophage-based biomimetic formulations and macrophage-hitchhiking as a strategy to effectively target tumors. We firmly believe that targeting macrophages or utilizing them as an indigenous carrier system could transform cancer management.
Collapse
Affiliation(s)
- Naitik Jain
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Syed Shahrukh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
8
|
Li K, Zang X, Meng X, Li Y, Xie Y, Chen X. Targeted delivery of quercetin by biotinylated mixed micelles for non-small cell lung cancer treatment. Drug Deliv 2022; 29:970-985. [PMID: 35343862 PMCID: PMC8967198 DOI: 10.1080/10717544.2022.2055225] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Lung cancer is the leading cause of cancer death world-wide and its treatment remains a challenge in clinic, especially for non-small cell lung cancer (NSCLC). Thus, more effective therapeutic strategies are required for NSCLC treatment. Quercetin (Que) as a natural flavonoid compound has gained increasing interests due to its anticancer activity. However, poor water solubility, low bioavailability, short half-life, and weak tumor accumulation hinder in vivo applications and antitumor effects of Que. In this study, we developed Que-loaded mixed micelles (Que-MMICs) assembled from 1,2-distearoyl-sn-glycero-3-phosphoethanolamine–poly(ethylene glycol)–biotin (DSPE–PEG–biotin) and poly(ethylene glycol) methyl ether methacrylate–poly[2-(dimethylamino) ethyl acrylate]–polycaprolactone (PEGMA–PDMAEA–PCL) for NSCLC treatment. The results showed that Que was efficiently encapsulated into the mixed micelles and the encapsulation efficiency (EE) was up to 85.7%. Cellular uptake results showed that biotin conjugation significantly improved 1.2-fold internalization of the carrier compared to that of non-targeted mixed micelles. In vitro results demonstrated that Que-MMICs could improve cytotoxicity (IC50 = 7.83 μg/mL) than Que-MICs (16.15 μg/mL) and free Que (44.22 μg/mL) to A549 cells, which efficiently induced apoptosis and arrested cell cycle. Furthermore, Que-MMICs showed satisfactory tumor targeting capability and antitumor efficacy possibly due to the combination of enhanced permeability and retention (EPR) and active targeting effect. Collectively, Que-MMICs demonstrated high accumulation at tumor site and exhibited superior anticancer activity in NSCLC bearing mice model.
Collapse
Affiliation(s)
- Kangkang Li
- School of Basic Medicine, Qingdao University,Qingdao, China
| | - Xinlong Zang
- School of Basic Medicine, Qingdao University,Qingdao, China
| | | | - Yanfeng Li
- School of Basic Medicine, Qingdao University,Qingdao, China
| | - Yi Xie
- School of Basic Medicine, Qingdao University,Qingdao, China
| | - Xuehong Chen
- School of Basic Medicine, Qingdao University,Qingdao, China
| |
Collapse
|
9
|
Tumor-associated macrophages in cancer: recent advancements in cancer nanoimmunotherapies. J Exp Clin Cancer Res 2022; 41:68. [PMID: 35183252 PMCID: PMC8857848 DOI: 10.1186/s13046-022-02272-x] [Citation(s) in RCA: 151] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/22/2022] [Indexed: 12/21/2022] Open
Abstract
AbstractCancer immunotherapy has emerged as a novel cancer treatment, although recent immunotherapy trials have produced suboptimal outcomes, with durable responses seen only in a small number of patients. The tumor microenvironment (TME) has been shown to be responsible for tumor immune escape and therapy failure. The vital component of the TME is tumor-associated macrophages (TAMs), which are usually associated with poor prognosis and drug resistance, including immunotherapies, and have emerged as promising targets for cancer immunotherapy. Recently, nanoparticles, because of their unique physicochemical characteristics, have emerged as crucial translational moieties in tackling tumor-promoting TAMs that amplify immune responses and sensitize tumors to immunotherapies in a safe and effective manner. In this review, we mainly described the current potential nanomaterial-based therapeutic strategies that target TAMs, including restricting TAMs survival, inhibiting TAMs recruitment to tumors and functionally repolarizing tumor-supportive TAMs to antitumor type. The current understanding of the origin and polarization of TAMs, their crucial role in cancer progression and prognostic significance was also discussed in this review. We also highlighted the recent evolution of chimeric antigen receptor (CAR)-macrophage cell therapy.
Collapse
|
10
|
Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. NANOSCALE ADVANCES 2022; 4:634-653. [PMID: 36131837 PMCID: PMC9418065 DOI: 10.1039/d1na00810b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 06/01/2023]
Abstract
The field of cancer nanomedicine has been fueled by the expectation of mitigating the inefficiencies and life-threatening side effects of conventional chemotherapy. Nanomedicine proposes to utilize the unique nanoscale properties of nanoparticles to address the most pressing questions in cancer treatment and diagnosis. The approval of nano-based products in the 1990s inspired scientific explorations in this direction. However, despite significant progress in the understanding of nanoscale properties, there are only very few success stories in terms of substantial increase in clinical efficacy and overall patient survival. All existing paradigms such as the concept of enhanced permeability and retention (EPR), the stealth effect and immunocompatibility of nanomedicine have been questioned in recent times. In this review we critically examine impediments posed by biological factors to the clinical success of nanomedicine. We put forth current observations on critical outstanding questions in nanomedicine. We also provide the promising side of cancer nanomedicine as we move forward in nanomedicine research. This would provide a future direction for research in nanomedicine and inspire ongoing investigations.
Collapse
Affiliation(s)
- M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| | - K Pavithran
- Department of Medical Oncology, Amrita Institute of Medial Sciences and Research Centre Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India
| | - Sabitha M
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| |
Collapse
|
11
|
|
12
|
Yang L, Xu J, Xie Z, Song F, Wang X, Tang R. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J Pharm Sci 2021; 16:762-771. [PMID: 35027952 PMCID: PMC8737405 DOI: 10.1016/j.ajps.2021.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
Carrier-free drug self-delivery systems consisting of amphiphilic drug-drug conjugate (ADDC) with well-defined structure and nanoscale features have drawn much attention in tumor drug delivery. Herein, we report a simple and effective strategy to prepare ADDC using derivatives of cisplatin (CP) and dasatinib (DAS), which further self-assembled to form reduction-responsive nanoparticles (CP-DDA NPs). DAS was modified with succinic anhydride and then connected with CP derivative by ester bonds. The size, micromorphology and in vitro drug release of CP-DDA NPs were characterized. The biocompatibility and bioactivity of these carrier-free nanoparticles were then investigated by HepG2 cells and H22-tumor bearing mice. In vitro and in vivo experiments proved that CP-DDA NPs had excellent anti-tumor activity and significantly reduced toxicities. This study provides a new strategy to design the carrier-free nanomedicine composed of CP and DAS for synergistic tumor treatment.
Collapse
Affiliation(s)
- Lu Yang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Zheng Xie
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Faquan Song
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| |
Collapse
|
13
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|