1
|
Ahmad I, Altameemi KKA, Hani MM, Ali AM, Shareef HK, Hassan ZF, Alubiady MHS, Al-Abdeen SHZ, Shakier HG, Redhee AH. Shifting cold to hot tumors by nanoparticle-loaded drugs and products. Clin Transl Oncol 2024:10.1007/s12094-024-03577-3. [PMID: 38922537 DOI: 10.1007/s12094-024-03577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Cold tumors lack antitumor immunity and are resistant to therapy, representing a major challenge in cancer medicine. Because of the immunosuppressive spirit of the tumor microenvironment (TME), this form of tumor has a low response to immunotherapy, radiotherapy, and also chemotherapy. Cold tumors have low infiltration of immune cells and a high expression of co-inhibitory molecules, such as immune checkpoints and immunosuppressive molecules. Therefore, targeting TME and remodeling immunity in cold tumors can improve the chance of tumor repression after therapy. However, tumor stroma prevents the infiltration of inflammatory cells and hinders the penetration of diverse molecules and drugs. Nanoparticles are an intriguing tool for the delivery of immune modulatory agents and shifting cold to hot tumors. In this review article, we discuss the mechanisms underlying the ability of nanoparticles loaded with different drugs and products to modulate TME and enhance immune cell infiltration. We also focus on newest progresses in the design and development of nanoparticle-based strategies for changing cold to hot tumors. These include the use of nanoparticles for targeted delivery of immunomodulatory agents, such as cytokines, small molecules, and checkpoint inhibitors, and for co-delivery of chemotherapy drugs and immunomodulatory agents. Furthermore, we discuss the potential of nanoparticles for enhancing the efficacy of cancer vaccines and cell therapy for overcoming resistance to treatment.
Collapse
Affiliation(s)
- Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
| | | | - Mohaned Mohammed Hani
- Department of Medical Instrumentation Engineering Techniques, Imam Ja'afar Al-Sadiq University, Al Muthanna, Iraq
| | - Afaq Mahdi Ali
- Department of Pharmaceutics, Al-Turath University College, Baghdad, Iraq
| | - Hasanain Khaleel Shareef
- Department of Medical Biotechnology, College of Science, Al-Mustaqbal University, Hilla, Iraq
- Biology Department, College of Science for Women, University of Babylon, Hilla, Iraq
| | | | | | | | | | - Ahmed Huseen Redhee
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
2
|
Liang H, Cui M, Tu J, Chen X. Advancements in osteosarcoma management: integrating immune microenvironment insights with immunotherapeutic strategies. Front Cell Dev Biol 2024; 12:1394339. [PMID: 38915446 PMCID: PMC11194413 DOI: 10.3389/fcell.2024.1394339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Osteosarcoma, a malignant bone tumor predominantly affecting children and adolescents, presents significant therapeutic challenges, particularly in metastatic or recurrent cases. Conventional surgical and chemotherapeutic approaches have achieved partial therapeutic efficacy; however, the prognosis for long-term survival remains bleak. Recent studies have highlighted the imperative for a comprehensive exploration of the osteosarcoma immune microenvironment, focusing on the integration of diverse immunotherapeutic strategies-including immune checkpoint inhibitors, tumor microenvironment modulators, cytokine therapies, tumor antigen-specific interventions, cancer vaccines, cellular therapies, and antibody-based treatments-that are directly pertinent to modulating this intricate microenvironment. By targeting tumor cells, modulating the tumor microenvironment, and activating host immune responses, these innovative approaches have demonstrated substantial potential in enhancing the effectiveness of osteosarcoma treatments. Although most of these novel strategies are still in research or clinical trial phases, they have already demonstrated significant potential for individuals with osteosarcoma, suggesting the possibility of developing new, more personalized and effective treatment options. This review aims to provide a comprehensive overview of the current advancements in osteosarcoma immunotherapy, emphasizing the significance of integrating various immunotherapeutic methods to optimize therapeutic outcomes. Additionally, it underscores the imperative for subsequent research to further investigate the intricate interactions between the tumor microenvironment and the immune system, aiming to devise more effective treatment strategies. The present review comprehensively addresses the landscape of osteosarcoma immunotherapy, delineating crucial scientific concerns and clinical challenges, thereby outlining potential research directions.
Collapse
Affiliation(s)
- Hang Liang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyao Tu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyi Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Cheng M, Kong Q, Tian Q, Cai W, Wang C, Yuan M, Wang W, Wang P, Yan W. Osteosarcoma-targeted Cu and Ce based oxide nanoplatform for NIR II fluorescence/magnetic resonance dual-mode imaging and ros cascade amplification along with immunotherapy. J Nanobiotechnology 2024; 22:151. [PMID: 38575943 PMCID: PMC10993435 DOI: 10.1186/s12951-024-02400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND As the lethal bone tumor, osteosarcoma often frequently occurs in children and adolescents with locally destructive and high metastasis. Distinctive kinds of nanoplatform with high therapeutical effect and precise diagnosis for osteosarcoma are urgently required. Multimodal optical imaging and programmed treatment, including synergistic photothermal-chemodynamic therapy (PTT-CDT) elicits immunogenetic cell death (ICD) is a promising strategy that possesses high bio-imaging sensitivity for accurate osteosarcoma delineating as well as appreciable therapeutic efficacy with ignorable side-effects. METHODS AND RESULTS In this study, mesoporous Cu and Ce based oxide nanoplatform with Arg-Gly-Asp (RGD) anchoring is designed and successfully constructed. After loading with indocyanine green, this nanoplatform can be utilized for precisely targeting and efficaciously ablating against osteosarcoma via PTT boosted CDT and the closely following ICD stimulation both in vitro and in vivo. Besides, it provides off-peak fluorescence bio-imaging in the second window of near-infrared region (NIR II, 1000-1700 nm) and Magnetic resonance signal, serves as the dual-mode contrast agents for osteosarcoma tissue discrimination. CONCLUSION Tumor targeted Cu&Ce based mesoporous nanoplatform permits efficient osteosarcoma suppression and dual-mode bio-imaging that opens new possibility for effectively diagnosing and inhibiting the clinical malignant osteosarcoma.
Collapse
Affiliation(s)
- Mo Cheng
- Department of Musculoskeletal Surgery of Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Qingjie Kong
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, P. R. China
| | - Qing Tian
- Department of Neurology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, 201799, P. R. China
| | - Weiluo Cai
- Department of Musculoskeletal Surgery of Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Chunmeng Wang
- Department of Musculoskeletal Surgery of Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Minjia Yuan
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China
- Shanghai Qiran Biotechnology Co., Ltd, Shanghai, 201702, China
| | - Wenxing Wang
- Department of Chemistry, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai, 200433, P. R. China.
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.
| | - Wangjun Yan
- Department of Musculoskeletal Surgery of Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
4
|
Wang H, Chen Y, Wei R, Zhang J, Zhu J, Wang W, Wang Z, Wupur Z, Li Y, Meng H. Synergistic Chemoimmunotherapy Augmentation via Sequential Nanocomposite Hydrogel-Mediated Reprogramming of Cancer-Associated Fibroblasts in Osteosarcoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309591. [PMID: 38113900 DOI: 10.1002/adma.202309591] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/02/2023] [Indexed: 12/21/2023]
Abstract
In osteosarcoma, immunotherapy often faces hurdles posed by cancer-associated fibroblasts (CAFs) that secrete dense extracellular matrix components and cytokines. Directly removing CAFs may prove ineffective and even promote tumor metastasis. To address this challenge, a sequential nanocomposite hydrogel that reshapes CAF behavior is developed, enhancing tumor-infiltrating T-cells in osteosarcoma. The approach utilizes an injectable blend of carboxymethyl chitosan and tetrabasic polyethylene glycol, forming a hydrogel for controlled release of a potent CAF suppressor (Nox4 inhibitor, Nox4i) and liposomal Doxorubicin (L-Dox) to induce immunogenic cell death (ICD) upon in situ administration. Nox4i effectively counters CAF activation, overcoming T-cell exclusion mechanisms, followed by programmed L-Dox release for ICD induction in stroma-rich osteosarcoma models. Combining the co-delivery gel with αPD-1 checkpoint inhibitor further enhances its effectiveness in an orthotopic osteosarcoma model. Immunophenotyping data underscore a significant boost in tumor T-cell infiltration and favorable anti-tumor immunity at the whole-animal level.
Collapse
Affiliation(s)
- Hui Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yu Chen
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Ran Wei
- Musculoskeletal Tumor Center, Beijing Key Laboratory of Musculoskeletal Tumor, Peking University People's Hospital, Beijing, 100044, China
| | - Jinlong Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiahui Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Wenbin Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhenfei Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Zulpikar Wupur
- Qiushi College, Beijing Institute of Technology, Beijing, 100081, China
| | - Yujing Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Huan Meng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
5
|
Cheng S, Wang H, Kang X, Zhang H. Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress. Pharmaceutics 2024; 16:251. [PMID: 38399305 PMCID: PMC10892906 DOI: 10.3390/pharmaceutics16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppressive elements within the tumor microenvironment are the primary drivers of tumorigenesis and malignant advancement. The presence, as well as the crosstalk between myeloid-derived suppressor cells (MDSCs), osteosarcoma-associated macrophages (OS-Ms), regulatory T cells (Tregs), and endothelial cells (ECs) with osteosarcoma cells cause the poor prognosis of OS. In addition, the consequent immunosuppressive factors favor the loss of treatment potential. Nanoparticles offer a means to dynamically and locally manipulate immuno-nanoparticles, which present a promising strategy for transforming OS-TME. Additionally, chimeric antigen receptor (CAR) technology is effective in combating OS. This review summarizes the essential mechanisms of immunosuppressive cells in the OS-TME and the current immune-associated strategies. The last part highlights the limitations of existing therapies and offers insights into future research directions.
Collapse
Affiliation(s)
- Shigao Cheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Hunan Loudi Central Hospital, Loudi 417000, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Hui Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Luo Y, Sun M, Tan L, Li T, Min L. Nano-Based Drug Delivery Systems: Potential Developments in the Therapy of Metastatic Osteosarcoma-A Narrative Review. Pharmaceutics 2023; 15:2717. [PMID: 38140058 PMCID: PMC10747574 DOI: 10.3390/pharmaceutics15122717] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Osteosarcoma, a predominant malignant bone tumor, poses significant challenges due to its high metastatic and recurrent nature. Although various therapeutic strategies are currently in use, they often inadequately target osteosarcoma metastasis. This review focuses on the potential of nanoscale drug delivery systems to bridge this clinical gap. It begins with an overview of the molecular mechanisms underlying metastatic osteosarcoma, highlighting the limitations of existing treatments. The review then transitions to an in-depth examination of nanoscale drug delivery technologies, emphasizing their potential to enhance drug bioavailability and reduce systemic toxicity. Central to this review is a discussion of recent advancements in utilizing nanotechnology for the potential intervention of metastatic osteosarcoma, with a critical analysis of several preclinical studies. This review aims to provide insights into the potential applications of nanotechnology in metastatic osteosarcoma therapy, setting the stage for future clinical breakthroughs and innovative cancer treatments.
Collapse
Affiliation(s)
- Yuanrui Luo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Minghao Sun
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Linyun Tan
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
| | - Li Min
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610064, China; (Y.L.); (M.S.); (L.T.)
- Department of Model Worker and Innovative Craftsman, West China Hospital, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Yu T, Cai Z, Chang X, Xing C, White S, Guo X, Jin J. Research Progress of Nanomaterials in Chemotherapy of Osteosarcoma. Orthop Surg 2023; 15:2244-2259. [PMID: 37403654 PMCID: PMC10475694 DOI: 10.1111/os.13806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 05/05/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Osteosarcoma (OS) is a common malignant bone tumor that occurs mostly in children and adolescents. At present, surgery after chemotherapy or postoperative adjuvant chemotherapy is the main treatment plan. However, the efficacy of chemotherapeutic drugs is limited by the occurrence of chemotherapeutic resistance, toxicity to normal cells, poor pharmacokinetic performance, and drug delivery failure. The delivery of chemotherapy drugs to the bone to treat OS may fail for a variety of reasons, such as a lack of selectivity for OS cells, initial sudden release, short-term release, and the presence of biological barriers (such as the blood-bone marrow barrier). Nanomaterials are new materials with at least one dimension on the nanometer scale (1-100 nm) in three-dimensional space. These materials have the ability to penetrate biological barriers and can accumulate preferentially in tumor cells. Studies have shown that the effective combination of nanomaterials and traditional chemotherapy can significantly improve the therapeutic effect. Therefore, this article reviews the latest research progress on the use of nanomaterials in OS chemotherapy.
Collapse
Affiliation(s)
- Tianci Yu
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Zongyan Cai
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Xingyu Chang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Chengwei Xing
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Sylvia White
- Pathology DepartmentYale School of MedicineNew HavenCTUSA
| | - Xiaoxue Guo
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Jiaxin Jin
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouChina
- Department of OrthopaedicsThe Second Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
8
|
Jiang Y, He K. Nanobiotechnological approaches in osteosarcoma therapy: Versatile (nano)platforms for theranostic applications. ENVIRONMENTAL RESEARCH 2023; 229:115939. [PMID: 37088317 DOI: 10.1016/j.envres.2023.115939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/08/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Constructive achievements in the field of nanobiotechnology and their translation into clinical course have led to increasing attention towards evaluation of their use for treatment of diseases, especially cancer. Osteosarcoma (OS) is one of the primary bone malignancies that affects both males and females in childhood and adolescence. Like other types of cancers, genetic and epigenetic mutations account for OS progression and several conventional therapies including chemotherapy and surgery are employed. However, survival rate of OS patients remains low and new therapies in this field are limited. The purpose of the current review is to provide a summary of nanostructures used in OS treatment. Drug and gene delivery by nanoplatforms have resulted in an accumulation of therapeutic agents for tumor cell suppression. Furthermore, co-delivery of genes and drugs by nanostructures are utilized in OS suppression to boost immunotherapy. Since tumor cells have distinct features such as acidic pH, stimuli-responsive nanoparticles have been developed to appropriately target OS. Besides, nanoplatforms can be used for biosensing and providing phototherapy to suppress OS. Furthermore, surface modification of nanoparticles with ligands can increase their specificity and selectivity towards OS cells. Clinical translation of current findings suggests that nanoplatforms have been effective in retarding tumor growth and improving survival of OS patients.
Collapse
Affiliation(s)
- Yao Jiang
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt Am Main, Germany.
| | - Ke He
- Minimally Invasive Tumor Therapies Center, Guangdong Second Provincial General Hospital, Guangzhou, China.
| |
Collapse
|
9
|
Shi P, Cheng Z, Zhao K, Chen Y, Zhang A, Gan W, Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J Nanobiotechnology 2023; 21:103. [PMID: 36944946 PMCID: PMC10031984 DOI: 10.1186/s12951-023-01826-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/18/2023] [Indexed: 03/23/2023] Open
Abstract
Osteosarcoma, the most common malignant tumor of the bone, seriously influences people's lives and increases their economic burden. Conventional chemotherapy drugs achieve limited therapeutic effects owing to poor targeting and severe systemic toxicity. Nanocarrier-based drug delivery systems can significantly enhance the utilization efficiency of chemotherapeutic drugs through targeting ligand modifications and reduce the occurrence of systemic adverse effects. A variety of ligand-modified nano-drug delivery systems have been developed for different targeting schemes. Here we review the biological characteristics and the main challenges of current drug therapy of OS, and further elaborate on different targeting schemes and ligand selection for nano-drug delivery systems of osteosarcoma, which may provide new horizons for the development of advanced targeted drug delivery systems in the future.
Collapse
Affiliation(s)
- Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Weikang Gan
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
10
|
Tian H, Cao J, Li B, Nice EC, Mao H, Zhang Y, Huang C. Managing the immune microenvironment of osteosarcoma: the outlook for osteosarcoma treatment. Bone Res 2023; 11:11. [PMID: 36849442 PMCID: PMC9971189 DOI: 10.1038/s41413-023-00246-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/17/2022] [Accepted: 12/29/2022] [Indexed: 03/01/2023] Open
Abstract
Osteosarcoma, with poor survival after metastasis, is considered the most common primary bone cancer in adolescents. Notwithstanding the efforts of researchers, its five-year survival rate has only shown limited improvement, suggesting that existing therapeutic strategies are insufficient to meet clinical needs. Notably, immunotherapy has shown certain advantages over traditional tumor treatments in inhibiting metastasis. Therefore, managing the immune microenvironment in osteosarcoma can provide novel and valuable insight into the multifaceted mechanisms underlying the heterogeneity and progression of the disease. Additionally, given the advances in nanomedicine, there exist many advanced nanoplatforms for enhanced osteosarcoma immunotherapy with satisfactory physiochemical characteristics. Here, we review the classification, characteristics, and functions of the key components of the immune microenvironment in osteosarcoma. This review also emphasizes the application, progress, and prospects of osteosarcoma immunotherapy and discusses several nanomedicine-based options to enhance the efficiency of osteosarcoma treatment. Furthermore, we examine the disadvantages of standard treatments and present future perspectives for osteosarcoma immunotherapy.
Collapse
Affiliation(s)
- Hailong Tian
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Jiangjun Cao
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Bowen Li
- grid.13291.380000 0001 0807 1581State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041 China
| | - Edouard C. Nice
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800 Australia
| | - Haijiao Mao
- Department of Orthopaedic Surgery, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, Zhejiang, 315020, People's Republic of China.
| | - Yi Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
11
|
Macrophage Repolarization as a Therapeutic Strategy for Osteosarcoma. Int J Mol Sci 2023; 24:ijms24032858. [PMID: 36769180 PMCID: PMC9917837 DOI: 10.3390/ijms24032858] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Macrophages are versatile immune cells and can adapt to both external stimuli and their surrounding environment. Macrophages are categorized into two major categories; M1 macrophages release pro-inflammatory cytokines and produce protective responses that lead to antimicrobial or antitumor activity. M2 or tumor-associated macrophages (TAM) release anti-inflammatory cytokines that support tumor growth, invasion capacity, and metastatic potential. Since macrophages can be re-polarized from an M2 to an M1 phenotype with a variety of strategies, this has emerged as an innovative anti-cancer approach. Osteosarcoma (OS) is a kind of bone cancer and consists of a complex niche, and immunotherapy is not very effective. Therefore, immediate attention to new strategies is required. We incorporated the recent studies that have used M2-M1 repolarization strategies in the aspect of treating OS cancer.
Collapse
|
12
|
Hyaluronic Acid-Based Nanomaterials Applied to Cancer: Where Are We Now? Pharmaceutics 2022; 14:pharmaceutics14102092. [PMID: 36297526 PMCID: PMC9609123 DOI: 10.3390/pharmaceutics14102092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022] Open
Abstract
Cancer cells normally develop the ability to rewire or reprogram themselves to become resistant to treatments that were previously effective. Despite progress in understanding drug resistance, knowledge gaps remain regarding the underlying biological causes of drug resistance and the design of cancer treatments to overcome it. So, resistance acquisition remains a major problem in cancer treatment. Targeted therapeutics are considered the next generation of cancer therapy because they overcome many limitations of traditional treatments. Numerous tumor cells overexpress several receptors that have a high binding affinity for hyaluronic acid (HA), while they are poorly expressed in normal body cells. HA and its derivatives have the advantage of being biocompatible and biodegradable and may be conjugated with a variety of drugs and drug carriers for developing various formulations as anticancer therapies such as micelles, nanogels, and inorganic nanoparticles. Due to their stability in blood circulation and predictable delivery patterns, enhanced tumor-selective drug accumulation, and decreased toxicity to normal tissues, tumor-targeting nanomaterial-based drug delivery systems have been shown to represent an efficacious approach for the treatment of cancer. In this review, we aim to provide an overview of some in vitro and in vivo studies related to the potential of HA as a ligand to develop targeted nanovehicles for future biomedical applications in cancer treatment.
Collapse
|
13
|
Design of Smart Nanomedicines for Effective Cancer Treatment. Int J Pharm 2022; 621:121791. [PMID: 35525473 DOI: 10.1016/j.ijpharm.2022.121791] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/22/2022]
Abstract
Nanomedicine is a novel field of study that involves the use of nanomaterials to address challenges and issues that are associated with conventional therapeutics for cancer treatment including, but not limited to, low bioavailability, low water-solubility, narrow therapeutic window, nonspecific distribution, and multiple side effects of the drugs. Multiple strategies have been exploited to reduce the nonspecific distribution, and thus the side effect of the active pharmaceutical ingredients (API), including active and passive targeting strategies and externally controllable release of the therapeutic cargo. Site-specific release of the drug prevents it from impacting healthy cells, thereby significantly reducing side effects. API release triggers can be either externally applied, as in ultrasound-mediated activation, or induced by the tumor. To rationally design such nanomedicines, a thorough understanding of the differences between the tumor microenvironment versus that of healthy tissues must be pared with extensive knowledge of stimuli-responsive biomaterials. Herein, we describe the characteristics that differentiate tumor tissues from normal tissues. Then, we introduce smart materials that are commonly used for the development of smart nanomedicines to be triggered by stimuli such as changes in pH, temperature, and enzymatic activity. The most recent advances and their impact on the field of cancer therapy are further discussed.
Collapse
|
14
|
Macrophage polarization synergizes with oxaliplatin in lung cancer immunotherapy via enhanced tumor cell phagocytosis. Transl Oncol 2021; 14:101202. [PMID: 34390893 PMCID: PMC8365514 DOI: 10.1016/j.tranon.2021.101202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 12/24/2022] Open
Abstract
LLC cells pretreated with OXA were more prone to be phagocytized by M1 than M2 macrophages. M2 repolarized to M1 by R848 in vitro showed enhanced phagocytic ability to OXA-treated LLC cells. Macrophage polarization from pro-tumor M2 to anti-tumor M1 synergizes with OXA.
Calreticulin (CALR) exposure is required for most immunogenic cell death (ICD) in the anti-tumor immunity induced by chemotherapeutic agents. The present study aimed to explore the anti-tumor efficacy of the combined administration of oxaliplatin (OXA) and R848 (an agent for macrophage polarization) in lung cancer cells. Flow cytometry and immunostaining assays were performed to evaluate CALR exposure induced by OXA in the murine Lewis lung carcinoma (LLC) cells. The phagocytosis of macrophages was determined using flow cytometry and western blotting assays. The anti-tumor efficacy of the OXA and R848 combination was evaluated using flow cytometry and western blotting in vitro and in vivo. OXA induced CALR exposure on the surface of LLC cells after low dose and short duration of treatment (20 μM OXA for 24 h). LLC cells pretreated with OXA were more prone to be phagocytized by M1 than M2 macrophages. M2 macrophages repolarized to M1 by R848 in vitro showed enhanced phagocytic ability to OXA-treated LLC cells. Finally, combined administration of OXA and R848 exhibited a synergistic anti-tumor effect than single agent applied in vitro and in vivo. Macrophage polarization from pro-tumor M2 to anti-tumor M1 synergizes with OXA in lung cancer immunotherapy via enhanced tumor cell phagocytosis.
Collapse
|
15
|
Ambrosio L, Raucci MG, Vadalà G, Ambrosio L, Papalia R, Denaro V. Innovative Biomaterials for the Treatment of Bone Cancer. Int J Mol Sci 2021; 22:8214. [PMID: 34360979 PMCID: PMC8347125 DOI: 10.3390/ijms22158214] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/18/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Bone cancer is a demanding challenge for contemporary medicine due to its high frequency of presentation and significant heterogeneity of malignant lesions developing within the bone. To date, available treatments are rarely curative and are primarily aimed at prolonging patients' survival and ameliorating their quality of life. Furthermore, both pharmacological and surgical therapies are aggravated by a consistent burden of adverse events and subsequent disability due to the loss of healthy bone structural and functional properties. Therefore, great research efforts are being made to develop innovative biomaterials able to selectively inhibit bone cancer progression while reducing the loss of bone structural properties secondary to local tissue invasion. In this review, we describe the state of the art of innovative biomaterials for the treatment of bone cancer. Along with physiological bone remodeling, the development of bone metastasis and osteosarcoma will be depicted. Subsequently, recent advances on nanocarrier-based drug delivery systems, as well as the application of novel, multifunctional biomaterials for the treatment of bone cancer will be discussed. Eventually, actual limitations and promising future perspectives regarding the employment of such approaches in the clinical scenario will be debated.
Collapse
Affiliation(s)
- Luca Ambrosio
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy; (G.V.); (R.P.); (V.D.)
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (M.G.R.); (L.A.)
| | - Gianluca Vadalà
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy; (G.V.); (R.P.); (V.D.)
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Viale J.F. Kennedy 54, Mostra d’Oltremare Pad. 20, 80125 Naples, Italy; (M.G.R.); (L.A.)
| | - Rocco Papalia
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy; (G.V.); (R.P.); (V.D.)
| | - Vincenzo Denaro
- Laboratory of Regenerative Orthopaedics, Department of Orthopaedic and Trauma Surgery, Campus Bio-Medico, University of Rome, Via Alvaro del Portillo 200, 00128 Rome, Italy; (G.V.); (R.P.); (V.D.)
| |
Collapse
|