1
|
Anwer M, Bhaliya K, Munn A, Wei MQ. Bacterial ghosts: A breakthrough approach to cancer vaccination. Biomed Pharmacother 2025; 182:117766. [PMID: 39700871 DOI: 10.1016/j.biopha.2024.117766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer is a devastating disease worldwide with high mortality rates and is a foremost concern for society. Immunotherapy has emerged as a promising strategy for treating cancer, harnessing the power of immune system to recognize and kill tumor cells. Bacterial ghosts (BGs), a novel platform in cancer vaccination, are suitable for personalized and effective immunotherapeutic interventions. BG are empty bacterial cell envelopes generated through a controlled lysis process, leaving behind empty but structurally intact cell membranes. BGs have been used as vaccine adjuvants and vaccine delivery vehicles worldwide. They possess inherent immunogenicity, enabling them to be used for controlled release and targeted drug delivery. Recently, the potential of BGs has been explored for tumor inhibition, making them suitable carrier vehicles. This review highlights cancer immunotherapy, methods of BG preparation, characterization of BGs, the interaction of BGs with the immune system, and research progress on BG-based cancer vaccines with future insights.
Collapse
Affiliation(s)
- Muneera Anwer
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia.
| | - Krupa Bhaliya
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | - Alan Munn
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| | - Ming Q Wei
- Menzies Health Institute Queensland and School of Medical Science, Griffith University, Gold Coast Campus, Parklands Drive, Southport, QLD 4215, Australia
| |
Collapse
|
2
|
Ackley BJ, Martin KL, Key TS, Clarkson CM, Bowen JJ, Posey ND, Ponder JF, Apostolov ZD, Cinibulk MK, Pruyn TL, Dickerson MB. Advances in the Synthesis of Preceramic Polymers for the Formation of Silicon-Based and Ultrahigh-Temperature Non-Oxide Ceramics. Chem Rev 2023; 123:4188-4236. [PMID: 37015056 DOI: 10.1021/acs.chemrev.2c00381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
Preceramic polymers (PCPs) are a group of specialty macromolecules that serve as precursors for generating inorganics, including ceramic carbides, nitrides, and borides. PCPs represent interesting synthetic challenges for chemists due to the elements incorporated into their structure. This group of polymers is also of interest to engineers as PCPs enable the processing of polymer-derived ceramic products including high-performance ceramic fibers and composites. These finished ceramic materials are of growing significance for applications that experience extreme operating environments (e.g., aerospace propulsion and high-speed atmospheric flight). This Review provides an overview of advances in the synthesis and postpolymerization modification of macromolecules forming nonoxide ceramics. These PCPs include polycarbosilanes, polysilanes, polysilazanes, and precursors for ultrahigh-temperature ceramics. Following our review of PCP synthetic chemistry, we provide examples of the application and processing of these polymers, including their use in fiber spinning, composite fabrication, and additive manufacturing. The principal objective of this Review is to provide a resource that bridges the disciplines of synthetic chemistry and ceramic engineering while providing both insights and inspiration for future collaborative work that will ultimately drive the PCP field forward.
Collapse
Affiliation(s)
- Brandon J Ackley
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- ARCTOS Technology Solutions, 1270 N. Fairfield Road, Dayton, Ohio 45432, United States
| | - Kara L Martin
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Thomas S Key
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Caitlyn M Clarkson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- NRC Research Associateship Programs, The National Academies, Washington, District of Columbia 20001, United States
| | - John J Bowen
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Nicholas D Posey
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - James F Ponder
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- UES, Inc., 4401 Dayton-Xenia Road, Dayton, Ohio 45432, United States
| | - Zlatomir D Apostolov
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Michael K Cinibulk
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Timothy L Pruyn
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Matthew B Dickerson
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
3
|
Kuttan SP, Abdulaziz A, Chekidhenkuzhiyil J, Raj D, Mohan M, Athiyanathil S. Characterization of pyomelanin secreted by Shewanella sp. and their application in metal recovery. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6705-6715. [PMID: 36006536 DOI: 10.1007/s11356-022-22686-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Melanin is a biopolymer with versatile structural and functional properties and diverse applications in recovering toxic chemicals from water and wastewater, biomedical imaging, and as theragnostic agent. We report the structural characterization and biosynthetic pathway of an extracellular pyomelanin secreted by a sponge-associated bacterium, Shewanella sp. (Shewanella-melanin), and their potential application in metal recovery from liquid. Pyomelanin particles of > 50 µm size were found in the culture medium within 48 h of growth, which were formed through the self-polymerization of benzoquinone molecule produced through homogentisic acid pathway. The aspC and hppD genes involved in the biosynthetic pathway of pyomelanin were detected in the whole genome sequence of Shewanella sp. The FT-IR spectra of Shewanella-melanin, at ~ 3300-3420 cm-1 corresponding to the stretching vibration of -NH and -OH, was in good agreement with that of Sepia melanin, while its elemental composition (C/N/H/S of 29.2:8.23:6.41:1.58) was unique. Shewanella-melanin showed ~ 300 and ~ 950 times increased chelation of manganese and iron from a liquid medium supplemented with 2 mM of MnSO4 and FeSO4, respectively, compared to a control. The FT-IR spectrum showed the binding of metal ions to the carboxylic acid, hydroxyl, and amine groups of Shewanella-melanin. The Shewanella-melanin, with its excellent metal biosorption, could be a potential candidate for removing toxic compounds from water, in turn contributing to the fulfillment of sustainable development goal (SDG) 6.
Collapse
Affiliation(s)
| | - Anas Abdulaziz
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr. Salim Ali Road, Kochi, Kerala, 682 018, India.
| | - Jasmin Chekidhenkuzhiyil
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr. Salim Ali Road, Kochi, Kerala, 682 018, India
| | - Devika Raj
- CSIR-National Institute of Oceanography, Regional Centre Kochi, Dr. Salim Ali Road, Kochi, Kerala, 682 018, India
| | - Mahesh Mohan
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala, 686 560, India
| | - Sujith Athiyanathil
- Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673 601, India
| |
Collapse
|