Wnorowska U, Łysik D, Piktel E, Zakrzewska M, Okła S, Lesiak A, Spałek J, Mystkowska J, Savage PB, Janmey P, Fiedoruk K, Bucki R. Ceragenin-mediated disruption of Pseudomonas aeruginosa biofilms.
PLoS One 2024;
19:e0298112. [PMID:
38346040 PMCID:
PMC10861078 DOI:
10.1371/journal.pone.0298112]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND
Microbial biofilms, as a hallmark of cystic fibrosis (CF) lung disease and other chronic infections, remain a desirable target for antimicrobial therapy. These biopolymer-based viscoelastic structures protect pathogenic organisms from immune responses and antibiotics. Consequently, treatments directed at disrupting biofilms represent a promising strategy for combating biofilm-associated infections. In CF patients, the viscoelasticity of biofilms is determined mainly by their polymicrobial nature and species-specific traits, such as Pseudomonas aeruginosa filamentous (Pf) bacteriophages. Therefore, we examined the impact of microbicidal ceragenins (CSAs) supported by mucolytic agents-DNase I and poly-aspartic acid (pASP), on the viability and viscoelasticity of mono- and bispecies biofilms formed by Pf-positive and Pf-negative P. aeruginosa strains co-cultured with Staphylococcus aureus or Candida albicans.
METHODS
The in vitro antimicrobial activity of ceragenins against P. aeruginosa in mono- and dual-species cultures was assessed by determining minimum inhibitory concentration (MIC) and minimum bactericidal/fungicidal concentration (MBC/MFC). Inhibition of P. aeruginosa mono- and dual-species biofilms formation by ceragenins alone and in combination with DNase I or poly-aspartic acid (pASP) was estimated by the crystal violet assay. Additionally, the viability of the biofilms was measured by colony-forming unit (CFU) counting. Finally, the biofilms' viscoelastic properties characterized by shear storage (G') and loss moduli (G"), were analyzed with a rotational rheometer.
RESULTS
Our results demonstrated that ceragenin CSA-13 inhibits biofilm formation and increases its fluidity regardless of the Pf-profile and species composition; however, the Pf-positive biofilms are characterized by elevated viscosity and elasticity parameters.
CONCLUSION
Due to its microbicidal and viscoelasticity-modifying properties, CSA-13 displays therapeutic potential in biofilm-associated infections, especially when combined with mucolytic agents.
Collapse