1
|
Tang X, Wang J, Chen J, Liu W, Qiao P, Quan H, Li Z, Dang E, Wang G, Shao S. Epidermal stem cells: skin surveillance and clinical perspective. J Transl Med 2024; 22:779. [PMID: 39169334 PMCID: PMC11340167 DOI: 10.1186/s12967-024-05600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024] Open
Abstract
The skin epidermis is continually influenced by a myriad of internal and external elements. At its basal layer reside epidermal stem cells, which fuels epidermal renovation and hair regeneration with powerful self-renewal ability, as well as keeping diverse signals that direct their activity under surveillance with quick response. The importance of epidermal stem cells in wound healing and immune-related skin conditions has been increasingly recognized, and their potential for clinical applications is attracting attention. In this review, we delve into recent advancements and the various physiological and psychological factors that govern distinct epidermal stem cell populations, including psychological stress, mechanical forces, chronic aging, and circadian rhythm, as well as providing an overview of current methodological approaches. Furthermore, we discuss the pathogenic role of epidermal stem cells in immune-related skin disorders and their potential clinical applications.
Collapse
Affiliation(s)
- Xin Tang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaqi Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Jiaoling Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Wanting Liu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Pei Qiao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Huiyi Quan
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Zhiguo Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Erle Dang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| | - Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shannxi, China.
| |
Collapse
|
2
|
Sugiyama E, Nanmo A, Nie X, Chang SY, Hashimoto M, Suzuki A, Kageyama T, Fukuda J. Large-Scale Preparation of Hair Follicle Germs Using a Microfluidic Device. ACS Biomater Sci Eng 2024; 10:998-1005. [PMID: 38193447 PMCID: PMC10865290 DOI: 10.1021/acsbiomaterials.3c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Hair follicle morphogenesis during embryonic development is driven by the formation of hair follicle germs (HFGs) via interactions between epithelial and mesenchymal cells. Bioengineered HFGs are potential tissue grafts for hair regenerative medicine because they can replicate interactions and hair follicle morphogenesis after transplantation. However, a mass preparation approach for HFGs is necessary for clinical applications, given that thousands of de novo hair follicles are required to improve the appearance of a single patient with alopecia. In this study, we developed a microfluidics-based approach for the large-scale preparation of HFGs. A simple flow-focusing microfluidic device allowed collagen solutions containing epithelial and mesenchymal cells to flow and generate collagen microbeads with distinct Janus structures. During the 3 days of culture, the collagen beads contracted owing to cellular traction forces, resulting in collagen- and cell-dense HFGs. The transplantation of HFGs into nude mice resulted in highly efficient de novo hair follicle regeneration. This method provides a scalable and robust tissue graft preparation approach for hair regeneration.
Collapse
Affiliation(s)
- Ellen Sugiyama
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Ayaka Nanmo
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Xiaolei Nie
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Shu-Yung Chang
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Michinao Hashimoto
- Pillar
of Engineering Product Development, Singapore
University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
- Digital
Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, 8 Somapah Rd, Singapore 487372, Singapore
| | - Atsushi Suzuki
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
| | - Tatsuto Kageyama
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa
Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| | - Junji Fukuda
- Faculty
of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Institute
of Advanced Sciences, Yokohama National
University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, Kanagawa 240-8501, Japan
- Kanagawa
Institute of Industrial Science and Technology, 3-2-1 Sakado Takatsu-ku, Kawasaki, Kanagawa 213-0012, Japan
| |
Collapse
|
3
|
Vatanashevanopakorn C, Sartyoungkul T. iPSC-based approach for human hair follicle regeneration. Front Cell Dev Biol 2023; 11:1149050. [PMID: 37325563 PMCID: PMC10266356 DOI: 10.3389/fcell.2023.1149050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
Hair follicles (HFs) are a multifunctional structure involved in physical protection, thermoregulation, sensational detection, and wound healing. Formation and cycling of HFs require dynamic interaction between different cell types of the follicles. Although the processes have been well studied, the generation of human functional HFs with a normal cycling pattern for clinical utilization has yet to be achieved. Recently, human pluripotent stem cells (hPSCs) serve as an unlimited cell source for generating various types of cells including cells of the HFs. In this review, HF morphogenesis and cycling, different cell sources used for HF regeneration, and potential strategies for HF bioengineering using induced pluripotent stem cells (iPSCs) are depicted. Challenges and perspectives toward the therapeutic use of bioengineered HFs for hair loss disorder are also discussed.
Collapse
Affiliation(s)
- Chinnavuth Vatanashevanopakorn
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thanutchaporn Sartyoungkul
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|