1
|
Kwon T, Guo H, Kim JO, Chae S, Lim EY, Park JB, Lee E, Choi I, Kim BJ, Lee YJ, Lee SG, Lee JH. Rationally Designed Binder with Polysulfide-Affinitive Moieties and Robust Network Structures for Improved Polysulfide Trapping and Structural Stability of Sulfur Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407224. [PMID: 39648473 DOI: 10.1002/smll.202407224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Lithium-sulfur batteries (LSBs) have emerged as a promising next-generation energy storage application owing to their high specific capacity and energy density. However, inherent insulating property of sulfur, along with its significant volume expansion during cycling, and shuttling behavior of lithium-polysulfides (LiPSs), hinder their practical application. To overcome these issues, a crosslinked cationic waterborne polyurethane (CCWPU) is rationally designed as a binder for LSBs. The mechanical robustness of CCWPU enables it to withstand the high stress derived from volume expansion of sulfur, facilitating charge-transferring through conserved charge-transfer pathway and promoting interconversion of LiPSs. Additionally, polar urethane groups offer favorable interaction sites with LiPSs, mitigating shuttling behavior of LiPSs via polar-polar interaction. Density functional theory investigations further elucidate that the incorporation of cationic moieties enhances LiPSs immobilization by confining Sn x- (x = 1 or 2) in LiPSs, thereby improving sulfur utilization. Benefiting from these, the cell with CCWPU demonstrates reduced polarization, superior LiPSs conversion rates, and stable cycling performance. Moreover, water-processable nature of CCWPU aligns with environmental consciousness. These diverse functionalities of CCWPU provide valuable insights for the development of advanced binder for LSBs, ultimately improving the electrochemical performances of LSBs.
Collapse
Affiliation(s)
- Taekyun Kwon
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Hengquan Guo
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Ji-Oh Kim
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Seongwook Chae
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Eun Young Lim
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Jae Bin Park
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Eunsol Lee
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Inhye Choi
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - Byeong Jin Kim
- Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| | - You-Jin Lee
- Battery Research Division, Electrical Materials Research Division, Korea Electrotechnology Research Institute, Changwon, 51543, Republic of Korea
| | - Seung Geol Lee
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jin Hong Lee
- School of Chemical Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
- Department of Organic Material Science and Engineering, Pusan National University, 2, Busandaehak-ro 63beong-gil, Geumjeong-gu, Busan, 46241, Republic of Korea
| |
Collapse
|
2
|
Drożdż K, Gołda-Cępa M, Chytrosz-Wróbel P, Kotarba A, Brzychczy-Włoch M. Improving Biocompatibility of Polyurethanes Apply in Medicine Using Oxygen Plasma and Its Negative Effect on Increased Bacterial Adhesion. Int J Biomater 2024; 2024:5102603. [PMID: 38434098 PMCID: PMC10907100 DOI: 10.1155/2024/5102603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Polyurethanes (PUs) are versatile polymers used in medical applications due to their high flexibility and fatigue resistance. PUs are widely used for synthetic blood vessels, wound dressings, cannulas, and urinary and cardiovascular catheters. Many scientific reports indicate that surface wettability is crucial for biocompatibility and bacterial adhesion. The use of oxygen plasma to modify PUs is advantageous because of its effectiveness in introducing oxygen-containing functional groups, thereby altering surface wettability. The purpose of this study was to investigate the effect of the modification of the oxygen plasma of polyurethane on its biocompatibility with lung tissue (A549 cell line) and the adhesion of Gram-positive bacteria (S. aureus and S. epidermidis). The results showed that the modification of polyurethane by oxygen plasma allowed the introduction of functional groups containing oxygen (-OH and -COOH), which significantly increased its hydrophilicity (change from 105° ± 2° to 9° ± 2°) of PUs. Surface analysis by atomic force microscopy (AFM) showed changes in PU topography (change in maximum height from ∼110.3 nm to ∼32.1 nm). Moreover, biocompatibility studies on A549 cells showed that on the PU-modified surface, the cells exhibited altered morphology (increases in cell surface area and length, and thus reduced circularity) without concomitant effects on cell viability. However, serial dilution and plate count and microscopic methods confirmed that plasma modification significantly increased the adhesion of S. aureus and S. epidermidis bacteria. This study indicate the important role of surface hydrophilicity in biocompatibility and bacterial adhesion, which is important in the design of new medical biomaterials.
Collapse
Affiliation(s)
- Kamil Drożdż
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-121, Poland
| | - Monika Gołda-Cępa
- Faculty of Chemistry, Jagiellonian University, Krakow 31-007, Poland
| | | | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University, Krakow 31-007, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Krakow 31-121, Poland
| |
Collapse
|