1
|
Guo Z, Bergeron KF, Mounier C. Oleate Promotes Triple-Negative Breast Cancer Cell Migration by Enhancing Filopodia Formation through a PLD/Cdc42-Dependent Pathway. Int J Mol Sci 2024; 25:3956. [PMID: 38612766 PMCID: PMC11012533 DOI: 10.3390/ijms25073956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Breast cancer, particularly triple-negative breast cancer (TNBC), poses a global health challenge. Emerging evidence has established a positive association between elevated levels of stearoyl-CoA desaturase 1 (SCD1) and its product oleate (OA) with cancer development and metastasis. SCD1/OA leads to alterations in migration speed, direction, and cell morphology in TNBC cells, yet the underlying molecular mechanisms remain elusive. To address this gap, we aim to investigate the impact of OA on remodeling the actin structure in TNBC cell lines, and the underlying signaling. Using TNBC cell lines and bioinformatics tools, we show that OA stimulation induces rapid cell membrane ruffling and enhances filopodia formation. OA treatment triggers the subcellular translocation of Arp2/3 complex and Cdc42. Inhibiting Cdc42, not the Arp2/3 complex, effectively abolishes OA-induced filopodia formation and cell migration. Additionally, our findings suggest that phospholipase D is involved in Cdc42-dependent filopodia formation and cell migration. Lastly, the elevated expression of Cdc42 in breast tumor tissues is associated with a lower survival rate in TNBC patients. Our study outlines a new signaling pathway in the OA-induced migration of TNBC cells, via the promotion of Cdc42-dependent filopodia formation, providing a novel insight for therapeutic strategies in TNBC treatment.
Collapse
Affiliation(s)
| | | | - Catherine Mounier
- Biological Sciences Department, Université du Québec à Montréal (UQAM), Montréal, QC H2X 1Y4, Canada
| |
Collapse
|
2
|
Lamour G, Malo M, Crépin R, Pelta J, Labdi S, Campillo C. Dynamically Mapping the Topography and Stiffness of the Leading Edge of Migrating Cells Using AFM in Fast-QI Mode. ACS Biomater Sci Eng 2024; 10:1364-1378. [PMID: 38330438 DOI: 10.1021/acsbiomaterials.3c01254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Cell migration profoundly influences cellular function, often resulting in adverse effects in various pathologies including cancer metastasis. Directly assessing and quantifying the nanoscale dynamics of living cell structure and mechanics has remained a challenge. At the forefront of cell movement, the flat actin modules─the lamellipodium and the lamellum─interact to propel cell migration. The lamellipodium extends from the lamellum and undergoes rapid changes within seconds, making measurement of its stiffness a persistent hurdle. In this study, we introduce the fast-quantitative imaging (fast-QI) mode, demonstrating its capability to simultaneously map both the lamellipodium and the lamellum with enhanced spatiotemporal resolution compared with the classic quantitative imaging (QI) mode. Specifically, our findings reveal nanoscale stiffness gradients in the lamellipodium at the leading edge, where it appears to be slightly thinner and significantly softer than the lamellum. Additionally, we illustrate the fast-QI mode's accuracy in generating maps of height and effective stiffness through a streamlined and efficient processing of force-distance curves. These results underscore the potential of the fast-QI mode for investigating the role of motile cell structures in mechanosensing.
Collapse
Affiliation(s)
- Guillaume Lamour
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Michel Malo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Raphaël Crépin
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Juan Pelta
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Sid Labdi
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| | - Clément Campillo
- Université Paris-Saclay, Univ Evry, CY Cergy Paris Université, CNRS, LAMBE, 91025 Evry-Courcouronnes, France
| |
Collapse
|
3
|
Shu W, Kaplan CN. A multiscale theory for spreading and migration of adhesion-reinforced mesenchymal cells. J R Soc Interface 2023; 20:20230317. [PMID: 38086406 PMCID: PMC10715917 DOI: 10.1098/rsif.2023.0317] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
We present a chemomechanical whole-cell theory for the spreading and migration dynamics of mesenchymal cells that can actively reinforce their adhesion to an underlying viscoelastic substrate as a function of its stiffness. Our multiscale model couples the adhesion reinforcement effect at the subcellular scale with the nonlinear mechanics of the nucleus-cytoskeletal network complex at the cellular scale to explain the concurrent monotonic area-stiffness and non-monotonic speed-stiffness relationships observed in experiments: we consider that large cell spreading on stiff substrates flattens the nucleus, increasing the viscous drag force on it. The resulting force balance dictates a reduction in the migration speed on stiff substrates. We also reproduce the experimental influence of the substrate viscosity on the cell spreading area and migration speed by elucidating how the viscosity may either maintain adhesion reinforcement or prevent it depending on the substrate stiffness. Additionally, our model captures the experimental directed migration behaviour of the adhesion-reinforced cells along a stiffness gradient, known as durotaxis, as well as up or down a viscosity gradient (viscotaxis or anti-viscotaxis), the cell moving towards an optimal viscosity in either case. Overall, our theory explains the intertwined mechanics of the cell spreading, migration speed and direction in the presence of the molecular adhesion reinforcement mechanism.
Collapse
Affiliation(s)
- Wenya Shu
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - C. Nadir Kaplan
- Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center for Soft Matter and Biological Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
4
|
Xu J, Xu X, Li X, He S, Li D, Ji B. Cellular mechanics of wound formation in single cell layer under cyclic stretching. Biophys J 2022; 121:288-299. [PMID: 34902328 PMCID: PMC8790211 DOI: 10.1016/j.bpj.2021.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/16/2021] [Accepted: 12/09/2021] [Indexed: 01/21/2023] Open
Abstract
Wounds can be produced when cells and tissues are subjected to excessive forces, for instance, under pathological conditions or nonphysiological loading. However, the cellular behaviors in the wound formation process are not clear. Here we tested the behaviors of wound formation in the epithelial layer with an in-suit uniaxial stretching device. We found that the wound often nucleates at the position where the cells are dividing. The polarization direction of cells near the wound is preferentially along the wound edge, whereas the cells far from the wound are preferentially perpendicular to the stretching direction. The larger the wound area is, the higher is the aspect ratio of the cells around the wound. Increasing the cell density will strengthen the cell layer. The higher the cell density is, the smaller is the area of the wounds, and the weaker is the effect of stretching on the polarization of the cells. Furthermore, we built a coarse-grained cell model that can explicitly consider the elasticity and viscoelasticity of cells, cell-cell interaction, and cell active stress, by which we simulated the wound formation process and quantitatively analyzed the force and stress fields in the cell layer, particularly around the wound. These analyses reveal the cellular mechanisms of wound formation behaviors in the cell layer under stretching and shed useful light on tissue engineering and regenerative medicine for biomedical applications.
Collapse
Affiliation(s)
- Jiayi Xu
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China,Oujiang Laboratory, Zhejiang, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China,Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Xiangyu Xu
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China,Oujiang Laboratory, Zhejiang, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xiaojun Li
- Department of Applied Mechanics, Beijing Institute of Technology, Beijing, China
| | - Shijie He
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Dechang Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China,Corresponding author
| | - Baohua Ji
- Oujiang Laboratory, Zhejiang, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China,Department of Engineering Mechanics, Zhejiang University, Hangzhou, China,Corresponding author
| |
Collapse
|
5
|
Zhou L, Feng S, Li L, Lü S, Zhang Y, Long M. Two Complementary Signaling Pathways Depict Eukaryotic Chemotaxis: A Mechanochemical Coupling Model. Front Cell Dev Biol 2021; 9:786254. [PMID: 34869388 PMCID: PMC8635958 DOI: 10.3389/fcell.2021.786254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 01/16/2023] Open
Abstract
Many eukaryotic cells, including neutrophils and Dictyostelium cells, are able to undergo correlated random migration in the absence of directional cues while reacting to shallow gradients of chemoattractants with exquisite precision. Although progress has been made with regard to molecular identities, it remains elusive how molecular mechanics are integrated with cell mechanics to initiate and manipulate cell motility. Here, we propose a two dimensional (2D) cell migration model wherein a multilayered dynamic seesaw mechanism is accompanied by a mechanical strain-based inhibition mechanism. In biology, these two mechanisms can be mapped onto the biochemical feedback between phosphoinositides (PIs) and Rho GTPase and the mechanical interplay between filamin A (FLNa) and FilGAP. Cell migration and the accompanying morphological changes are demonstrated in numerical simulations using a particle-spring model, and the diffusion in the cell membrane are simulations using a one dimensional (1D) finite differences method (FDM). The fine balance established between endogenous signaling and a mechanically governed inactivation scheme ensures the endogenous cycle of self-organizing pseudopods, accounting for the correlated random migration. Furthermore, this model cell manifests directional and adaptable responses to shallow graded signaling, depending on the overwhelming effect of the graded stimuli guidance on strain-based inhibition. Finally, the model cell becomes trapped within an obstacle-ridden spatial region, manifesting a shuttle run for local explorations and can chemotactically “escape”, illustrating again the balance required in the complementary signaling pathways.
Collapse
Affiliation(s)
- Lüwen Zhou
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo Zhejiang, China.,Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shiliang Feng
- Smart Materials and Advanced Structure Laboratory, School of Mechanical Engineering and Mechanics, Ningbo University, Ningbo Zhejiang, China.,Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Center for Biomechanics and Bioengineering, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Feng S, Zhou L, Zhang Y, Lü S, Long M. Mechanochemical modeling of neutrophil migration based on four signaling layers, integrin dynamics, and substrate stiffness. Biomech Model Mechanobiol 2018; 17:1611-1630. [PMID: 29968162 DOI: 10.1007/s10237-018-1047-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023]
Abstract
Directional neutrophil migration during human immune responses is a highly coordinated process regulated by both biochemical and biomechanical environments. In this paper, we developed an integrative mathematical model of neutrophil migration using a lattice Boltzmann-particle method built in-house to solve the moving boundary problem with spatiotemporal regulation of biochemical components. The mechanical features of the cell cortex are modeled by a series of spring-connected nodes representing discrete cell-substrate adhesive sites. The intracellular signaling cascades responsible for cytoskeletal remodeling [e.g., small GTPases, phosphoinositide-3-kinase (PI3K), and phosphatase and tensin homolog] are built based on our previous four-layered signaling model centered on the bidirectional molecular transport mechanism and implemented as reaction-diffusion equations. Focal adhesion dynamics are determined by force-dependent integrin-ligand binding kinetics and integrin recycling and are thus integrated with cell motion. Using numerical simulations, the model reproduces the major features of cell migration in response to uniform and gradient biochemical stimuli based on the quantitative spatiotemporal regulation of signaling molecules, which agree with experimental observations. The existence of multiple types of integrins with different binding kinetics could act as an adaptation mechanism for substrate stiffness. Moreover, cells can perform reversal, U-turn, or lock-on behaviors depending on the steepness of the reversal biochemical signals received. Finally, this model is also applied to predict the responses of mutants in which PTEN is overexpressed or disrupted.
Collapse
Affiliation(s)
- Shiliang Feng
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Lüwen Zhou
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Zhang
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shouqin Lü
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mian Long
- Center for Biomechanics and Bioengineering, Key Laboratory of Microgravity (National Microgravity Laboratory), and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Ryan GL, Holz D, Yamashiro S, Taniguchi D, Watanabe N, Vavylonis D. Cell protrusion and retraction driven by fluctuations in actin polymerization: A two-dimensional model. Cytoskeleton (Hoboken) 2017; 74:490-503. [PMID: 28752950 PMCID: PMC5725282 DOI: 10.1002/cm.21389] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/19/2017] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Animal cells that spread onto a surface often rely on actin-rich lamellipodial extensions to execute protrusion. Many cell types recently adhered on a two-dimensional substrate exhibit protrusion and retraction of their lamellipodia, even though the cell is not translating. Travelling waves of protrusion have also been observed, similar to those observed in crawling cells. These regular patterns of protrusion and retraction allow quantitative analysis for comparison to mathematical models. The periodic fluctuations in leading edge position of XTC cells have been linked to excitable actin dynamics using a one-dimensional model of actin dynamics, as a function of arc-length along the cell. In this work we extend this earlier model of actin dynamics into two dimensions (along the arc-length and radial directions of the cell) and include a model membrane that protrudes and retracts in response to the changing number of free barbed ends of actin filaments near the membrane. We show that if the polymerization rate at the barbed ends changes in response to changes in their local concentration at the leading edge and/or the opposing force from the cell membrane, the model can reproduce the patterns of membrane protrusion and retraction seen in experiment. We investigate both Brownian ratchet and switch-like force-velocity relationships between the membrane load forces and actin polymerization rate. The switch-like polymerization dynamics recover the observed patterns of protrusion and retraction as well as the fluctuations in F-actin concentration profiles. The model generates predictions for the behavior of cells after local membrane tension perturbations.
Collapse
Affiliation(s)
- Gillian L. Ryan
- Department of Physics, Kettering University, 1700 University Avenue, Flint MI 48504, United States
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| | - Danielle Holz
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| | - Sawako Yamashiro
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Daisuke Taniguchi
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Faculty of Medicine, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Dimitrios Vavylonis
- Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem PA 18105, United States
| |
Collapse
|
8
|
Genin GM, Shenoy VB, Peng G, Buehler MJ. Integrated Multiscale Biomaterials Experiment and Modeling. ACS Biomater Sci Eng 2017; 3:2628-2632. [PMID: 31157296 PMCID: PMC6544164 DOI: 10.1021/acsbiomaterials.7b00821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The integration of modeling and experimentation is an integral component of all engineering design. Developing the technologies to achieve this represents a critical challenge in biomaterials because of the hierarchical structures that comprise them and the spectra of timescales upon which they operate. Progress in integrating modeling and experiment in biomaterials represents progress towards harnessing them for engineering application. We present here a summary of the state of the art, and outlooks for the field as a whole.
Collapse
Affiliation(s)
- Guy M Genin
- Department of Mechanical Engineering and Materials Science, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 United States
- NSF Science and Technology Center for Engineering Mechanobiology, 1 Brookings Drive, Washington University in St. Louis, St. Louis, MO 63130 United States
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104-6391 United States
- NSF Science and Technology Center for Engineering Mechanobiology, University of Pennsylvania, 220 South 33rd Street, Philadelphia, PA 19104-6391 United States
| | - Grace Peng
- National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Boulevard, Suite 202, Bethesda, MD 20892-5469 United States
| | - Markus J Buehler
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|