1
|
Mohammad W, Chen L, Wu B, Dietz P, Bou-Akl T, Ren W, Markel DC. Cell migration within porous electrospun nanofibrous scaffolds in a mouse subcuticular implantation model. J Orthop Res 2024. [PMID: 39342460 DOI: 10.1002/jor.25979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/05/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Cellular infiltration into electrospun nanofibers (NFs) is limited due to the dense structure and small pore sizes. We developed a programmed NF collector that can fabricate porous NFs with desired pore sizes and thickness. Previously we demonstrated improved cellular proliferation and differentiation of osteoblasts, osteoclasts, and fibroblasts with increased pore sizes of polycaprolactone (PCL) NF in-vitro. This study investigated in-vivo host cell migration and vascular ingrowth within porous NF sheets implanted subcutaneously in a mouse model. Two types of PCL NFs with well-defined pore sizes were created using varying speeds of the NF collector: NF-zero (no movement, pore size 14.4 ± 8.9 µm2) and NF-high (0.232 mm/min, pore size 286.7 ± 381.9 µm2). The NF obtained by using classical flat NF collector (2D NF, pore size 1.09 ± 1.7 µm2) was a control. The three formulae of NFs were implanted subcutaneously in 18 BALB/cJ mice. Animals were killed 7 and 28-days after implantation (n = 3 per group per time point). The tissue with implanted NFs were collected for histologic analysis. Overall, 7-day samples showed little inflammatory response. At 28-days, the degree of tissue penetration of PCL NF sheet matrices was linked to pore size and area. NFs with the largest pore area had more efficient tissue migration and new blood vessel formation compared to those with smaller pore sizes. No newly formed blood vessels were observed in the 2D NF group. A porous NF scaffold with controllable pore size has potential for tissue repair/regeneration in situ with potential for many applications in orthopaedics.
Collapse
Affiliation(s)
- Waleed Mohammad
- Section of Orthopedic Surgery, Ascension Providence Hospital, Southfield, Michigan, USA
| | - Liang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
| | - Bin Wu
- Section of Orthopedic Surgery, Ascension Providence Hospital, Southfield, Michigan, USA
| | - Paula Dietz
- Section of Orthopedic Surgery, Ascension Providence Hospital, Southfield, Michigan, USA
| | - Therese Bou-Akl
- Section of Orthopedic Surgery, Ascension Providence Hospital, Southfield, Michigan, USA
| | - Weiping Ren
- Section of Orthopedic Surgery, Ascension Providence Hospital, Southfield, Michigan, USA
- Virotech Co, Inc, Troy, Michigan, USA
| | - David C Markel
- Section of Orthopedic Surgery, Ascension Providence Hospital, Southfield, Michigan, USA
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan, USA
- The Core Institute, Novi, Michigan, USA
| |
Collapse
|
2
|
Cho SH, Lee S, Kim JI. 3D cotton-type anisotropic biomimetic scaffold with low fiber motion electrospun via a sharply inclined array collector for induced osteogenesis. Sci Rep 2024; 14:7365. [PMID: 38548858 PMCID: PMC10978854 DOI: 10.1038/s41598-024-58135-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/26/2024] [Indexed: 04/01/2024] Open
Abstract
Electrospinning is an effective method to fabricate fibrous scaffolds that mimic the ECM of bone tissue on a nano- to macro-scale. However, a limitation of electrospun fibrous scaffolds for bone tissue engineering is the structure formed by densely compacted fibers, which significantly impedes cell infiltration and tissue ingrowth. To address this problem, several researchers have developed numerous techniques for fabricating 3D fibrous scaffolds with customized topography and pore size. Despite the success in developing various 3D electrospun scaffolds based on fiber repulsion, the lack of contact points between fibers in those scaffolds has been shown to hinder cell attachment, migration, proliferation, and differentiation due to excessive movement of the fibers. In this article, we introduce a Dianthus caryophyllus-inspired scaffold fabricated using SIAC-PE, a modified collector under specific viscosity conditions of PCL/LA solution. The developed scaffold mimicking the structural similarities of the nature-inspired design presented enhanced cell proliferation, infiltration, and increased expression of bone-related factors by reducing fiber movements, presenting high space interconnection, high porosity, and controlled fiber topography.
Collapse
Affiliation(s)
- Sun Hee Cho
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Soonchul Lee
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do, Republic of Korea.
| | - Jeong In Kim
- Department of Orthopaedic Surgery, CHA Bundang Medical Center, CHA University School of Medicine, 335 Pangyo-ro, Bundang-gu, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
3
|
Wang S, Ding R, Liang G, Zhang W, Yang F, Tian Y, Yu J, Zhang S, Ding B. Direct Synthesis of Polyimide Curly Nanofibrous Aerogels for High-Performance Thermal Insulation Under Extreme Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2313444. [PMID: 38114068 DOI: 10.1002/adma.202313444] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/15/2023] [Indexed: 12/21/2023]
Abstract
Maintaining human body temperature is one of the basic needs for living, which requires high-performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross-link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm-3 , extreme temperature tolerance (mechanical robustness over -196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m-1 K-1 , providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications.
Collapse
Affiliation(s)
- Sai Wang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Ruida Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Guoqiang Liang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Wei Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fengjin Yang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yucheng Tian
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
4
|
Kaniuk E, Lechowska-Liszka A, Gajek M, Nikodem A, Ścisłowska-Czarnecka A, Rapacz-Kmita A, Stodolak-Zych E. Correlation between porosity and physicochemical and biological properties of electrospinning PLA/PVA membranes for skin regeneration. BIOMATERIALS ADVANCES 2023; 152:213506. [PMID: 37364396 DOI: 10.1016/j.bioadv.2023.213506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Electrospinning is an increasingly popular technique for obtaining scaffolds for skin regeneration. However, electrospun scaffolds may also have some disadvantages, as the densely packed fibers in the scaffold structure can limit the penetration of skin cells into the inner part of the material. Such a dense arrangement of fibers can cause the cells to treat the 3D material as 2D one, and thus cause them to accumulate only on the upper surface. In this study, bi-polymer scaffolds made of polylactide (PLA) and polyvinyl alcohol (PVA) electrospun in a sequential or a concurrent system were investigated in a different PLA:PVA ratio (2:1 and 1:1). The properties of six types of model materials were investigated and compared i.e.; the initial materials electrospun by the sequential (PLA/PVA, 2PLA/PVA) and the concurrent system (PLA||PVA) and the same materials with removed PVA fibers (PLA/rPVA, 2PLA/rPVA, PLA||rPVA). The fiber models were intended to increase the porosity and coherent structure parameters of the scaffolds. The applied treatment involving the removal of PVA nanofibers increased the size of interfibrous pores formed between the PLA fibers. Ultimately, the porosity of the PLA/PVA scaffolds increased from 78 % to 99 %, and the time of water absorption decreased from 516 to 2 s. The change in wettability was induced by a synergistic effect of decrease in roughness after washing out and the presence of residual PVA fibers. The chemical analysis carried out confirmed the presence of PVA residues on the PLA fibers (FTIR-ATR study). In vitro studies were performed on human keratinocytes (HaKaT) and macrophages (RAW264.7), for which penetration into the inner part of the PLAIIPVA scaffold was observed. The new proposed approach, which allows the removal of PVA fibers from the bicomponent material, allows to obtain a scaffold with increased porosity, and thus better permeability for cells and nutrients.
Collapse
Affiliation(s)
- Ewa Kaniuk
- AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland
| | | | - Marcin Gajek
- AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland
| | - Anna Nikodem
- Wroclaw University of Science and Technology, 27 Wybrzeże Wyspiańskiego st., Wrocław, Poland
| | | | - Alicja Rapacz-Kmita
- AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland
| | - Ewa Stodolak-Zych
- AGH University of Science and Technology, Al. Mickiewicza 30, Krakow, Poland.
| |
Collapse
|
5
|
Rahmani M, Moghim MH, Zebarjad SM, Eqra R. Surface modification of a polypropylene separator by an electrospun coating layer of Poly(vinyl alchohol)-SiO2 for lithium-ion batteries. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-023-03491-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Sekkarapatti Ramasamy M, Krishnamoorthi Kaliannagounder V, Rahaman A, Park CH, Kim CS, Kim B. Synergistic Effect of Reinforced Multiwalled Carbon Nanotubes and Boron Nitride Nanosheet-Based Hybrid Piezoelectric PLLA Scaffold for Efficient Bone Tissue Regeneration. ACS Biomater Sci Eng 2022; 8:3542-3556. [PMID: 35853623 DOI: 10.1021/acsbiomaterials.2c00459] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Electrospun poly(l-lactic acid) nanofibers (PLLANFs) have been receiving considerable attention in bone tissue engineering (BTE) due to their tunable biodegradability and remarkable in vitro and in vivo biocompatibility. However, deterioration in the mechanical strength of PLLANFs during the regeneration process leads to low osteoinductive performances. Additionally, their high hydrophobicity and limited piezoelectric properties have to be addressed concerning BTE. Herein, we report an efficient approach for fabricating high-performance PLLANF hybrid scaffolds for BTE by reinforcing amphiphilic triblock copolymer pluronic F-127 (PL)-functionalized nanofillers (PL-functionalized carboxylated multiwalled carbon nanotubes (PL-cMWCNTs) and PL-functionalized exfoliated boron nitride nanosheets (PL-EBN)). The synergistic reinforcement effect from one-dimensional (1D) electrically conducting PL-cMWCNTs and two-dimensional (2D) piezoelectric PL-EBN was remarkable in PLLANFs, and the obtained PL-Hybrid (PL-cMWCNTs + PL-EBN) reinforced scaffolds have outperformed the mechanical strength, wettability, and piezoelectric performances of pristine PLLANFs. Consequently, in vitro biocompatibility results reveal the enhanced proliferation of MC3T3-E1 cells on PL-Hybrid nanofiber scaffolds. Furthermore, the ALP activity, ARS staining, and comparable osteogenic gene expression results demonstrated significant osteogenic differentiation of MC3T3-E1 cells on PL-Hybrid nanofiber scaffolds than on the pristine PLLANF scaffold. Thus, the reported approach for constructing high-performance piezoelectric biodegradable scaffolds for BTE by the synergistic effect of PL-cMWCNTs and PL-EBN holds great promise in tissue engineering applications.
Collapse
Affiliation(s)
| | - Vignesh Krishnamoorthi Kaliannagounder
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ashiqur Rahaman
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea
| | - Chan Hee Park
- Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea.,Department of Bionanotechnology and Bioconvergence Engineering, Graduate School, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Byungki Kim
- School of Mechatronics Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea.,Future Convergence Engineering, Korea University of Technology and Education, Cheonan, Chungnam 31253, Republic of Korea
| |
Collapse
|
7
|
Wlodarczyk J, Stojko M, Musial-Kulik M, Karpeta-Jarzabek P, Pastusiak M, Janeczek H, Dobrzynski P, Sobota M, Kasperczyk J. Dual-jet electrospun PDLGA/PCU nonwovens and their mechanical and hydrolytic degradation properties. J Mech Behav Biomed Mater 2021; 126:105050. [PMID: 34959096 DOI: 10.1016/j.jmbbm.2021.105050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/26/2022]
Abstract
A dual-jet electrospinning was used to mix a different hydrophilicity poly(carbonate urethanes) (PCUs) nanofibers with a biodegradable poly(D,L-lactide-co-glycolide) (PDLGA) copolyester microfibers. As a result, PDLGA/PCU partially degradable nonwovens consisting of an interlaced of both components fibers were obtained. In order to examine the hydrolytic degradation process of polyester fraction, as well as changes that occurred in the mechanical properties of the whole nonwovens, gel permeation chromatography, proton nuclear magnetic resonance spectroscopy, differential scanning calorimetry and scanning electron microscopy as well as static tensile test were performed. Obtained results showed that for the introduction of more hydrophobic PCU nanofibers (ChronoSil), the process of copolyester chain scission slowed down and the erosion mechanism proceeded in bulk. Unexpectedly, even greater deceleration of PDLGA fibers degradation was observed in case of more hydrophilic PCU (HydroThane), and erosion mechanism changed to surface. Enhancement the affinity of the whole nonwoven to the water, manifested by strong water uptake, facilitated the diffusion processes of both: water and acid degradation by-products, which limited autocatalysis reactions of the hydrolysis of ester bonds. On the other hand, strength tests showed the synergy in the mechanical characteristics of both components. Presented method allows influencing the mechanism and rate of polyester degradation without changing its chemical composition and physical properties, affecting only the physical interactions between the nonwoven and the degradation environment, and thus, on diffusion processes. Obtained partially degradable materials possessed also time prolonged functional properties, compared to the copolyester-only nonwoven itself, thus could be considered as promising for biomedical applications e.g. in drug release systems, implants or surgical meshes for supporting soft tissues.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland.
| | - Mateusz Stojko
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland; Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200, Sosnowiec, Poland
| | - Monika Musial-Kulik
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Paulina Karpeta-Jarzabek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Malgorzata Pastusiak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Henryk Janeczek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Piotr Dobrzynski
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland
| | - Michal Sobota
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland.
| | - Janusz Kasperczyk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 Curie-Sklodowska St., 41-819, Zabrze, Poland; Department of Biopharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 8 Jednosci St., 41-200, Sosnowiec, Poland
| |
Collapse
|
8
|
Parisi C, Qin K, Fernandes FM. Colonization versus encapsulation in cell-laden materials design: porosity and process biocompatibility determine cellularization pathways. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2021; 379:20200344. [PMID: 34334019 DOI: 10.1098/rsta.2020.0344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/28/2021] [Indexed: 06/13/2023]
Abstract
Seeding materials with living cells has been-and still is-one of the most promising approaches to reproduce the complexity and the functionality of living matter. The strategies to associate living cells with materials are limited to cell encapsulation and colonization, however, the requirements for these two approaches have been seldom discussed systematically. Here we propose a simple two-dimensional map based on materials' pore size and the cytocompatibility of their fabrication process to draw, for the first time, a guide to building cellularized materials. We believe this approach may serve as a straightforward guideline to design new, more relevant materials, able to seize the complexity and the function of biological materials. This article is part of the theme issue 'Bio-derived and bioinspired sustainable advanced materials for emerging technologies (part 1)'.
Collapse
Affiliation(s)
- Cleo Parisi
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Kankan Qin
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| | - Francisco M Fernandes
- Laboratoire de Chimie de la Matière Condensée de Paris, Sorbonne Université, UMR7574, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
9
|
Yang F, Wang J, Li X, Jia Z, Wang Q, Yu D, Li J, Niu X. Electrospinning of a sandwich-structured membrane with sustained release capability and long-term anti-inflammatory effects for dental pulp regeneration. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00152-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
10
|
Su Y, Toftdal MS, Le Friec A, Dong M, Han X, Chen M. 3D Electrospun Synthetic Extracellular Matrix for Tissue Regeneration. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Mette Steen Toftdal
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Stem Cell Delivery and Pharmacology Novo Nordisk A/S DK-2760 Måløv Denmark
| | - Alice Le Friec
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Menglin Chen
- Department of Biological and Chemical Engineering Aarhus University DK-8000 Aarhus C Denmark
- Interdisciplinary Nanoscience Center (iNANO) Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
11
|
Wu H, Zhao L, Zhang S, Si Y, Yu J, Ding B. Ultralight and Mechanically Robust Fibrous Sponges Tailored by Semi-Interpenetrating Polymer Networks for Warmth Retention. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18165-18174. [PMID: 33834758 DOI: 10.1021/acsami.1c03658] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
People living in very cold climates urgently desire warmth retention equipment to remain healthy. However, creating materials that exhibit both effective warm retention and robust mechanical properties to maintain stable structures is extremely challenging. Herein, we report a facile and time-saving strategy for preparing ultralight, mechanically robust, and high-performance warmth retention materials via direct electrospinning and thermal crosslinking. Fluffy fibrous assemblies with stereoscopic fiber networks are fabricated with a humidity-induced electrospinning technique, followed by heating to create semi-interpenetrating polymer networks (semi-IPNs) within fibers to acquire fibrous sponges (FSs). The semi-IPN-based FSs (semi-IPN FSs) present integrated properties of high tensile stress (∼1 MPa), good fatigue resistance (∼0% plastic deformation after 1000 cyclic tensile or compressive tests), and nondestructive resilience in liquid nitrogen (-196 °C). Furthermore, the semi-IPN FSs exhibit a low volume density of ∼2.2 mg cm-3, effective heat preservation ability (low thermal conductivity ∼25.8 mW m-1 K-1), and desired waterproofness and breathability. The successful synthesis of semi-IPN FSs provides a novel attempt to develop high-performance materials with robust mechanical properties for numerous applications.
Collapse
Affiliation(s)
- Hongyan Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Lei Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Shichao Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
12
|
Prabakaran S, Rajan M. The osteogenic and bacterial inhibition potential of natural and synthetic compound loaded metal–ceramic composite coated titanium implant for orthopedic applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02363b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Schematic illustration of the preparation, electrophoretic deposition, antibacterial and osteogenic bone regeneration abilities of the MHAP/ChN/GGe/GTN composite. Where, the green colored shape with red, yellow and blue spheres indicates the GGe.
Collapse
Affiliation(s)
- Selvakani Prabakaran
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory, Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
13
|
Garkal A, Kulkarni D, Musale S, Mehta T, Giram P. Electrospinning nanofiber technology: a multifaceted paradigm in biomedical applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj04159b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review focuses on the process of preparation of nanofibers via Es, the design and setup of the instrument, critical parameter optimization, preferable polymers, solvents, characterization techniques, and recent development and biomedical applications of nanofibers.
Collapse
Affiliation(s)
- Atul Garkal
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Bajajnagar, Aurangabad, Maharashtra, 431136, India
| | - Shubham Musale
- Department of Pharmaceutics, Dr D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri-Pune, Maharashtra, 411018, India
| | - Tejal Mehta
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Prabhanjan Giram
- Department of Pharmaceutics, Dr D.Y. Patil Institute of Pharmaceutical Sciences and Research, Pimpri-Pune, Maharashtra, 411018, India
| |
Collapse
|
14
|
Cao L, Si Y, Yin X, Yu J, Ding B. Ultralight and Resilient Electrospun Fiber Sponge with a Lamellar Corrugated Microstructure for Effective Low-Frequency Sound Absorption. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35333-35342. [PMID: 31487451 DOI: 10.1021/acsami.9b12444] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Low-density 3D ultrafine fiber assemblies obtained from direct electrospinning enable promising applications in sound absorption fields but are often hindered by their poor structure stability. Here, we demonstrate an electrospun ultrafine fiber sponge with a microstructure-derived reversible elasticity and high sound absorption property, which is achieved by designing a hierarchical lamellar corrugated architecture that functioned as elastic units. The obtained electrospun fiber sponge can quickly recover to the original height even under the distortion from burdens 8900 times its weight. Particularly, the material can maintain its structural stability after 100 cycles at 60% strain. Moreover, the initial hierarchical structure and hydrophobicity of the prepared materials endow them with an ultralight property (density of 6.63 mg cm-3), superior low-frequency sound absorption, and excellent performance maintenance. The successful synthesis of these fascinating materials may provide new insights into the design of lightweight and efficient sound absorption materials.
Collapse
Affiliation(s)
- Leitao Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Xia Yin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|
15
|
Chen L, Al-Shawk A, Rea C, Mazeh H, Wu X, Chen W, Li Y, Song W, Markel DC, Ren W. Preparation of electrospun nanofibers with desired microstructures using a programmed three-dimensional (3D) nanofiber collector. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110188. [PMID: 31753331 DOI: 10.1016/j.msec.2019.110188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
The traditional electrospinning process produces dense two-dimensional (2D) nanofiber (NF) sheets that limit cell infiltration and proliferation. Our previous study demonstrated that 3D NF sheets could be formed on an NF collector surface mounted with multiple movable needles through the corona discharge. In this study, we developed a programmed electrospun 3D NF collector. It can precisely control the moving speed of NF collector during electrospinning; thereby fabricating 3D NFs with desired microstructures (pore size, pore volume, and interconnectivity). Four types of polycaprolactone (PCL) 3D NF matrices with different microstructures can be obtained concurrently on the NF collector surface, which are set by different forward moving speed of the NF collector device: NF-zero (no move, as control), NF-low (0.085 mm/min), NF-mid (0.158 mm/min) and NF-high (0.232 mm/min). A linear increase of the NF sheet thickness (from 0.21 mm to 0.91 mm) was recorded with accelerating collector movement. Quantitative analysis using scanning electron microscopy (SEM), micro-computed tomography (μ-CT), and confocal laser scanning microscopy (CLSM) showed a monotonic increase of pore size and porosity with the increase of collector moving speeds. The collector movement also impacted the crystallinity and mechanical properties of the NFs. When prepared at high collector speed, the NFs showed improved proliferation and differentiation (p < .05) of pre-osteoblastic MC3T3 cells compared to the NFs from the static collector. A programmed NF collector device allows for the reproducible, precise and continuous fabrication of 3D NFs with tailorable geometry and microstructures. This simple, controllable, one-step process could promote the clinical translation of electrospun NFs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Liang Chen
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Ameer Al-Shawk
- Department of Mechanic Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Christopher Rea
- Department of Engineering Technology, Wayne State University, Detroit, MI 48201, USA
| | - Hanan Mazeh
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Xin Wu
- Department of Mechanic Engineering, Wayne State University, Detroit, MI 48201, USA
| | - Wen Chen
- Department of Engineering Technology, Wayne State University, Detroit, MI 48201, USA
| | - Yawen Li
- Department of Biomedical Engineering, Lawrence Technological University, Southfield, MI 48075, USA
| | - Wei Song
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA
| | - David C Markel
- Department of Orthopedics, Providence Hospital and Medical Center, Southfield, MI 48075, USA
| | - Weiping Ren
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA; Department of Orthopedics, Providence Hospital and Medical Center, Southfield, MI 48075, USA; John D. Dingle VA Medical Center, Detroit, MI 48202, USA.
| |
Collapse
|