1
|
Chu M, Zhao S, Yuan T, Yan J, Sheng X, Lan S, Dong A. Photothermal-Induced Multimodal Antibacterial Dressing Comprising N-Halamine Hydrogel Loaded with Cow Dung Biochar for Infected Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56653-56665. [PMID: 39401944 DOI: 10.1021/acsami.4c09552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Disposal of the cow dung pollutants arising from cattle farming threatens the environment and public safety in diverse ways. To date, researchers have worked on developing new pathways to control and manage cattle farming wastes, but most do not involve the reuse of these wastes. Herein, a cow dung biochar-modulated photothermal N-halamine hydrogel (i.e., PAN/CA/CoBC/pMAG-Cl) was designed for converting cow dung into biochar (CoBC), which was then coupled with a 3D interpenetrating hydrogel network to treat infected wounds. The PAN/CA/CoBC/pMAG-Cl hydrogel exhibited excellent synergistic antibacterial performance against 106 CFU·mL-1 Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) within 60 min. The bactericidal effect was multimodal, involving CoBC-based photothermal killing (i.e., temperature as high as 80.5 °C) after 808 nm near-infrared light irradiation for 10 min, contact killing through the strong oxidative characteristic of N-halamine (pMAG-Cl), and release killing via active halogens (i.e., Cl+) reinforced by the photothermal action of CoBC. The S. aureus-infected wound model in vivo demonstrated that the PAN/CA/CoBC/pMAG-Cl hydrogel worked as an ideal wound dressing, capable of resisting bacterial infection, accelerating the healing process, and promoting epithelial regeneration. This proposed strategy could indicate a new way for the disposal of cow dung pollutant and its reuse in antibacterial-associated applications.
Collapse
Affiliation(s)
- Mengnan Chu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuang Zhao
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Tingrui Yuan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jing Yan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
| |
Collapse
|
2
|
Zhang Y, Qian Y, Wen Y, Gui Q, Xu Y, Lu X, Zhang L, Song W. In Situ Preparation of Chlorine-Regenerable Antimicrobial Polymer Molecular Sieve Membranes. Molecules 2024; 29:2980. [PMID: 38998932 PMCID: PMC11243515 DOI: 10.3390/molecules29132980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
Microbial contamination has profoundly impacted human health, and the effective eradication of widespread microbial issues is essential for addressing serious hygiene concerns. Taking polystyrene (PS) membrane as an example, we herein developed report a robust strategy for the in situ preparation of chlorine-regenerable antimicrobial polymer molecular sieve membranes through combining post-crosslinking and nucleophilic substitution reaction. The cross-linking PS membranes underwent a reaction with 5,5-dimethylhydantoin (DMH), leading to the formation of polymeric N-halamine precursors (PS-DMH). These hydantoinyl groups within PS-DMH were then efficiently converted into biocidal N-halamine structures (PS-DMH-Cl) via a simple chlorination process. ATR-FTIR and XPS spectra were recorded to confirm the chemical composition of the as-prepared PS-DMH-Cl membranes. SEM analyses revealed that the chlorinated PS-DMH-Cl membranes displayed a rough surface with a multitude of humps. The effect of chlorination temperature and time on the oxidative chlorine content in the PS-DMH-Cl membranes was systematically studied. The antimicrobial assays demonstrated that the PS-DMH-Cl membranes could achieve a 6-log inactivation of E. coli and S. aureus within just 4 min of contact time. Additionally, the resulting PS-DMH-Cl membranes exhibited excellent stability and regenerability of the oxidative chlorine content.
Collapse
Affiliation(s)
- Yu Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Yiduo Qian
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yuheng Wen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qiudi Gui
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yixin Xu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Xiuhong Lu
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Li Zhang
- Shanghai Key Laboratory of Molecular Imaging, School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
3
|
Bromberg L, Magariños B, Torres BS, Santos Y, Concheiro A, Hatton TA, Alvarez-Lorenzo C. Multifunctional polymeric guanidine and hydantoin halamines with broad biocidal activity. Int J Pharm 2024; 651:123779. [PMID: 38181993 DOI: 10.1016/j.ijpharm.2024.123779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
Prolonged and excessive use of biocides during the coronavirus disease era calls for incorporating new antiviral polymers that enhance the surface design and functionality for existing and potential future pandemics. Herein, we investigated previously unexplored polyamines with nucleophilic biguanide, guanidine, and hydantoin groups that all can be halogenated leading to high contents of oxidizing halogen that enables enhancement of the biocidal activity. Primary amino groups can be used to attach poly(N-vinylguanidine) (PVG) and poly(allylamine-co-4-aminopyridine-co-5-(4-hydroxybenzylidene)hydantoin) (PAH) as well as a broad-spectrum commercial biocide poly(hexamethylene biguanide) (PHMB) onto a solid support. Halogenation of polymer suspensions was conducted through in situ generation of excess hypobromous acid (HBrO) from bromine and sodium hydroxide or by sodium hypochlorite in aqueous solutions, resulting in N-halamines with high contents of active > N-Br or > N-Cl groups. The virucidal activity of the polymers against human respiratory coronavirus HCoV-229E increased dramatically with their halogenation. Brominated PHMB-Br showed activation activity value > 5 even at 1 mg/L, and complete virus inhibition was observed with either PHMB-Br or PAH-Br at 10 mg/mL. Brominated PVG-Br and PAH-Br possessed fungicidal activity against C. albicans, while PHMB was fungistatic. PHMB, PHMB-Br and PAH polymers demonstrated excellent bactericidal activity against the methicillin-resistant S. aureus and vancomycin-resistant E. faecium. Brominated polymers (PHMB-Br, PVG-Br, PAH-Br) were not toxic to the HeLa monolayers, indicating acceptable biocompatibility to cultured human cells. With these features, the N-halamine polymers of the present study are a worthwhile addition to the arsenal of biocides and are promising candidates for development of non-leaching coatings.
Collapse
Affiliation(s)
- Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Beatriz Magariños
- Department of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Beatriz S Torres
- Department of Microbiology and Parasitology, Facultad de Biología, CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Ysabel Santos
- Department of Microbiology and Parasitology, Institute of Research on Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Angel Concheiro
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Carmen Alvarez-Lorenzo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, I+D Farma Group (GI-1645), Facultad de Farmacia, Instituto de Materiales (iMATUS), and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| |
Collapse
|
4
|
Dai L, Yuan J, Xu J, Lou J, Fan X. Reversible bacteria-killing and bacteria-releasing cotton fabric with anti-bacteria adhesion ability for potential sustainable protective clothing applications. Int J Biol Macromol 2023; 253:126580. [PMID: 37659495 DOI: 10.1016/j.ijbiomac.2023.126580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Multifunctional antibacterial surfaces are playing an essential role in various areas. Smart antibacterial materials equipped with switchable "bacteria-killing" and "bacteria-releasing" abilities have been created by scientists. However, most of them are either biologically incompatible, or complex fabricating procedures, or cannot prevent themselves from being attached by bacteria. In this work, a double-layer smart antibacterial surface was created easily by simple surface initiate atom transfer radical polymerization: the upper layer PSBMA provides anti-bacteria adhesion capacity, the NCl bond can show bacteria-killing ability and the under layer PNIPAM can exhibit bacteria-releasing property. Remarkably, the NCl bond can interconvert with the NH bond easily, which allows switching between bacteria-killing and bacteria-releasing. As a result, the functional cotton fabrics can resist about 99.66 % of bacteria attaching, kill nearly 100 % of attached bacteria after 5 min contacting and release about 99.02 % of the formerly attached bacteria. Furthermore, the functional cotton fabric kept excellent anti-bacteria adhesion ability (about 99.27 %) and bacteria-releasing capacity (about 98.30 %) after 9 cycles of re-chlorination. In general, a reversible "bacteria-killing" and "bacteria-releasing" cotton fabric was fabricated with well anti-bacteria adhesion capacity in a simple way, and this smart multifunctional cotton fabric shows a great potential application in reusable protective clothing.
Collapse
Affiliation(s)
- Li Dai
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Jiangfei Lou
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, PR China.
| |
Collapse
|
5
|
Bu D, Liu X, Cao Y, Feng H, Wang R, Xu Z, Xiao L, Zhu W. Preparation of quaternized N-halamine modified graphene oxide based antibacterial hydrogel and wound healing of bacterial infection. Colloids Surf B Biointerfaces 2023; 229:113451. [PMID: 37451225 DOI: 10.1016/j.colsurfb.2023.113451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/24/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
In clinical practice, the wound on the surface of the skin is prone to bacterial infection, for which healing of infected wounds has always been a tremendous challenge for clinics and research institutions. We developed a multifunctional bactericidal, recyclable, and slow-release graphene oxide-based hydrogel for bacterial wound healing and real-time monitoring of bacterial infection in this study. At the same time, the material has a sensing function, which can be used in the connection between the injured skin and the continuous detection equipment. QNGH (quaternarized N-halamine-grafted GO hydrogel) is manufactured by hydrogen bonding between quaternized N-halamine-modified graphene oxide and polyvinyl alcohol (PVA). The results show that in the mouse model of full-thickness skin repair, the hydrogel can continuously release germicidal ions and recyclability, promoting wound healing and contraction. Further, the graphene oxide-based hydrogel has excellent strain sensing performance. It detects the bending and stretching movements of different parts of the human body quickly, stably, and sensitively to show an excellent real-time monitoring performance of human motion. The sensing function of the hydrogel further broadens its application field. Therefore, this hydrogel material is expected to be a candidate material for sensing devices at the wound.
Collapse
Affiliation(s)
- Danlin Bu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Xudong Liu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Yizhao Cao
- College of Polymer Material and Engineering, Qingdao University of Science and Technology, Qingdao 266000, People's Republic of China
| | - Hengyu Feng
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Ruiqiang Wang
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Zice Xu
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China
| | - Linghan Xiao
- Jilin Province Key Laboratory of Carbon Fiber Development and Application, College of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, People's Republic of China.
| | - Wei Zhu
- Jilin Women And Children Health Hospital, Changchun 130012, People's Republic of China.
| |
Collapse
|
6
|
Gao Y, Zhang L, Wang Z, Lu L. Aggregation-Induced Electrochemiluminescence and Nitric Oxide Recognition by Halogen Bonding with a Ruthenium(II) Complex. Chempluschem 2023; 88:e202200421. [PMID: 36808260 DOI: 10.1002/cplu.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 02/21/2023]
Abstract
In this study, a new strategy for NO detection based on the aggregation-induced electrochemical luminescence (AIECL) of a ruthenium-based complex and the halogen bonding effect was developed. First, [Ru(phen)2 (phen-Br2 )]2+ (phen : 1,10-phenanthroline, phen-Br2 : 3,8-dibromo-1,10-phenanthroline) was synthesized and exhibited aggregation-induced emission (AIE) and AIECL properties in a poor solvent (H2 O). [Ru(phen)2 (phen-Br2 )]2+ exhibited greatly enhanced AIECL properties compared to its AIE intensity. When the volume fraction of water (fw , v %) in the H2 O-acetonitrile (MeCN) system was increased from 30 to 90 %, the photoluminescence and electrochemiluminescence (ECL) intensities were three- and 800-fold that of the pure MeCN system, respectively. Dynamic light scattering and scanning electron microscopy results indicated that [Ru(phen)2 (phen-Br2 )]2+ aggregated into nanoparticles. AIECL is sensitive to NO because of its halogen bonding effect. The C-Br⋅⋅⋅N bond between [Ru(phen)2 (phen-Br2 )]2+ and NO increased the distance of complex molecules, resulting in ECL quenching. A detection limit of 2 nM was obtained with 5 orders of magnitude linear range. The combination of the AIECL system and the halogen bond effect expands the theoretical research and applications in biomolecular detection, molecular sensors, and stages of medical diagnosis.
Collapse
Affiliation(s)
- Yafang Gao
- Key Laboratory of Beijing on Regional Air Pollution Control Department of Environmental Science, Beijing University of Technology, No.100 pingleyuan, Beijing, China
| | - Linlin Zhang
- Key Laboratory of Beijing on Regional Air Pollution Control Department of Environmental Science, Beijing University of Technology, No.100 pingleyuan, Beijing, China
| | - Ziqi Wang
- Key Laboratory of Beijing on Regional Air Pollution Control Department of Environmental Science, Beijing University of Technology, No.100 pingleyuan, Beijing, China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control Department of Environmental Science, Beijing University of Technology, No.100 pingleyuan, Beijing, China
| |
Collapse
|
7
|
Cao P, Bai X, He Y, Song P, Wang R, Huang J. Nano-assemblies of phosphonium-functionalized diblock copolymers with fabulous antibacterial properties and relationships of structure-activity. J Mater Chem B 2022; 10:9202-9215. [PMID: 36317705 DOI: 10.1039/d2tb01778d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
As a novel antimicrobial material, quaternary phosphonium salts (QPSs) have been drawing close attention because of their excellent antimicrobial capacity with high activity and low bacterial survivability. Polymeric QPSs (PQPSs) also exhibit selectivity and long-term stability, however the polymerization of QPSs is severely challenged by low controllability and narrow selectivity of cation type. In this study, high-conversion RAFT polymerization is employed to prepare innovative phosphonium-functionalized diblock copolymers (PFDCs) with desired molecular weights and particle sizes. The excellent antibacterial activity of the PFDCs achieves lowest MIC values of 40 and 60 μg mL-1 (i.e., 1.4 and 2.2 μmol L-1) against E. coli and S. aureus, respectively. Mixing with an ink, dye, and latex coating does not weaken the antibacterial activity of the PFDCs, which inhibited 99.9% E. coli, showing broad applicability in different media. The effects of the cation type, synthesis medium, crosslinking content, and particle size on the morphology and antibacterial activity are studied. In summary, the RAFT polymerization of QPSs through the versatile design of ionic liquid monomers and the polymerization-induced self-assembly (PISA) method for constructing nano-assemblies with various micromorphology and particle size provides an exceedingly efficient way to build up multifunctional and multi-morphological polymeric nano-objects that open up vast possibilities in the fields of antibiotics, drug delivery, templated synthesis, and catalysis.
Collapse
Affiliation(s)
- Peng Cao
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Xue Bai
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Yufeng He
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Pengfei Song
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Rongmin Wang
- Key Lab. Eco-functional Polymer Materials of MOE, Institute of Polymers, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.
| | - Junchao Huang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Chen H, Zhang J, Yang F, Lin T, Zhang J, Cai X, Zhang P, Tan S. Implanting a Copper Ion into a TiO 2 Nanorod Array for the Investigation on the Synergistic Antibacterial Mechanism between Mechanical Cracking and Chemical Damage. ACS Biomater Sci Eng 2022; 8:1464-1475. [PMID: 35302342 DOI: 10.1021/acsbiomaterials.2c00089] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Titanium (Ti) and its alloys are extensively applied in dental and orthopedic implants due to their characteristics of good mechanical property and corrosion resistance. However, Ti and its alloys suffer from the absence of certain biological activity and antibacterial ability. Herein, we synthesized a titanium dioxide (TiO2) nanorod array on the surface of a Ti plate, and the obtained TiO2 nanorod array was further modified by Cu ions through ion implantation technology in an attempt to endow medical Ti with an antibacterial ability and maintain a normal biological function synchronously. The antibacterial ability of the TiO2 nanorod array with the incorporation of Cu ions was vastly improved compared with those of the unmodified TiO2 nanorod array and pure Ti. In particular, owing to the synergy between the chemical damage of the released Cu2+ to the cell and the mechanical cracking of the TiO2 nanorod array, the antibacterial rate of the TiO2 nanorod array modified by Cu ions against Escherichia coli or Staphylococcus aureus could reach 99%. In addition, no cytotoxicity was detected in such prepared coating during the CCK-8 assay. Moreover, the corrosion resistance of the sample was significantly better than that of pure Ti. Overall, we demonstrated that the application of ion implantation technology could open up a promising pathway to design and develop further antibacterial material for the biomedical domain.
Collapse
Affiliation(s)
- Huakai Chen
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Jinglin Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.,School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Fengjuan Yang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Tongyao Lin
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China
| | - Xiang Cai
- School of Light Industry and Materials, Guangdong Polytechnic, Foshan 528041, P. R. China
| | - Peng Zhang
- Institute of Advanced Wear & Corrosion Resistant and Functional Materials, Jinan University, Guangzhou 510632, P. R. China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, P. R. China.,Guangdong Jianpai New Materials Co., Ltd., Foshan 528500, P. R. China
| |
Collapse
|
9
|
Guo W, Cao P, Dai F, Li Y, Wang R, Song P, He Y. Reversible addition‐fragmentation chain transfer polymerization for fabrication of polymer cations‐adjustable porous materials with excellent antibacterial activity. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Wenling Guo
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Peng Cao
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Fengli Dai
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Yonggang Li
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Rongmin Wang
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Pengfei Song
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| | - Yufeng He
- Key Lab. Eco‐functional Polymer Materials of MOE Institute of Polymer, College of Chemistry & Chemical Engineering, Northwest Normal University Lanzhou China
| |
Collapse
|
10
|
Cost-effective fabrication, antibacterial application and cell viability studies of modified nonwoven cotton fabric. Sci Rep 2022; 12:2493. [PMID: 35169158 PMCID: PMC8847346 DOI: 10.1038/s41598-022-06391-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 01/28/2022] [Indexed: 11/08/2022] Open
Abstract
In the present work, nonwoven cotton fabric was modified for antibacterial applications using low-cost and eco-friendly precursors. The treatment of fabric with alkali leads to the formation of active sites for surface modification, followed by dip coating with silver nanoparticles and chitosan. The surface was chlorinated in the next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus luteus, Staphylococcus aureus, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without affecting strength and integrity of fabric. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.
Collapse
|
11
|
Dey A, Pandey G, Rawtani D. Functionalized nanomaterials driven antimicrobial food packaging: A technological advancement in food science. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108469] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Zhang P, Li J, Yang M, Huang L, Bu F, Xie Z, Li G, Wang X. Inserting Menthoxytriazine into Poly(ethylene terephthalate) for Inhibiting Microbial Adhesion. ACS Biomater Sci Eng 2021; 8:570-578. [PMID: 34968021 DOI: 10.1021/acsbiomaterials.1c01448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Antimicrobial modification of poly(ethylene terephthalate) (PET) is effective in preventing the adhesion and growth of microorganisms on its surface. However, few methods are available to modify PET directly at its backbone to impart the antimicrobial effect. Herein, menthoxytriazine-modified PET (PMETM) based on the stereochemical antimicrobial strategy was reported. This novel PET was prepared by inserting menthoxytriazine into the PET backbone. The antibacterial adhesion test and the antifungal landing test were employed to confirm the antiadhesion ability of PMETM. PMETM could effectively inhibit the adhesion of bacteria, with inhibition ratios of 99.9 and 99.7% against Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive), respectively. In addition, PMETM exhibited excellent resistance to Aspergillus niger (fungal) contamination for more than 30 days. Cytotoxicity assays indicated that PMETM was a noncytotoxic material. These results suggested that the insertion of menthoxytriazine in the PET backbone was a promising strategy to confer antimicrobial properties to PET.
Collapse
Affiliation(s)
- Pengfei Zhang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jiyu Li
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Mei Yang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lifei Huang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fanqiang Bu
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zixu Xie
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guofeng Li
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
13
|
Wang S, Li J, Cao Y, Gu J, Wang Y, Chen S. Non-Leaching, Rapid Bactericidal and Biocompatible Polyester Fabrics Finished with Benzophenone Terminated N-halamine. ADVANCED FIBER MATERIALS 2021; 4:119-128. [PMID: 35359822 PMCID: PMC8450708 DOI: 10.1007/s42765-021-00100-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/20/2021] [Indexed: 05/04/2023]
Abstract
Pathogenic bacteria can proliferate rapidly on porous fabrics to form bacterial plaques/biofilms, resulting in potential sources of cross-transmissions of diseases and increasing cross-infection in public environments. Many works on antibacterial modification of cotton fabrics have been reported, while very few works were reported to endow poly(ethylene terephthalate) (PET) fabrics with non-leaching antibacterial function without compromising their innate physicochemical properties though PET is the most widely used fabric. Therefore, it is urgent to impart the PET fabrics with non-leaching antibacterial activity. Herein, a novel N-halamine compound, 1-chloro-3-benzophenone-5,5-dimethylhydantoin (Cl-BPDMH), was developed to be covalently bonded onto PET fabrics, rendering non-leaching antibacterial activity while negligible cytotoxicity based on contact-killing principle. Bacterial was easily adhered to Cl-BPDMH finished PET fabrics, and then it was inactivated quickly within 10 s. Furthermore, the breaking strength, breaking elongation, tearing strength, water vapor permeability, air permeability and whiteness of Cl-BPDMH finished PET fabrics were improved obviously compared to raw PET fabrics. Hence, this work developed a facile approach to fabricate multifunctional synthetic textiles to render outstanding and rapid bactericidal activity without compromising their physicochemical properties and biocompatibility. Supplementary Information The online version contains supplementary material available at 10.1007/s42765-021-00100-z.
Collapse
Affiliation(s)
- Shu Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - JianNa Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen, 518060 People’s Republic of China
| | - Yihong Cao
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - JingWei Gu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - YuanFeng Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| | - ShiGuo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060 People’s Republic of China
| |
Collapse
|
14
|
Lan S, Zhang J, Li J, Guo Y, Sheng X, Dong A. An N-Halamine/Graphene Oxide-Functionalized Electrospun Polymer Membrane That Inactivates Bacteria on Contact and by Releasing Active Chlorine. Polymers (Basel) 2021; 13:polym13162784. [PMID: 34451322 PMCID: PMC8400313 DOI: 10.3390/polym13162784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/16/2022] Open
Abstract
The emergence of antibiotic-resistant "superbugs" in recent decades has led to widespread illness and death and is a major ongoing public health issue. Since traditional antimicrobials and antibiotics are in many cases showing limited or no effectiveness in fighting some emerging pathogens, there is an urgent need to develop and explore novel antibacterial agents that are both powerful and reliable. Combining two or more antibiotics or antimicrobials has become a hot topic in antibacterial research. In this contribution, we report on using a simple electrospinning technique to create an N-halamine/graphene oxide-modified polymer membrane with excellent antibacterial activity. With the assistance of advanced techniques, the as-obtained membrane was characterized in terms of its chemical composition, morphology, size, and the presence of active chlorine. Its antibacterial properties were tested with Escherichia coli (E. coli) as the model bacteria, using the colony-counting method. Interestingly, the final N-halamine/graphene oxide-based antibacterial fibrous membrane inactivated E. coli both on contact and by releasing active chlorine. We believe that the synergistic antimicrobial action of our as-fabricated fibrous membrane should have great potential for utilization in water disinfection, air purification, medical and healthcare products, textile products, and other antibacterial-associated fields.
Collapse
Affiliation(s)
- Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
| | - Jinghua Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
| | - Jie Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
| | - Yanan Guo
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (S.L.); (J.Z.); (J.L.); (Y.G.)
- Correspondence: (X.S.); (A.D.)
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
- Correspondence: (X.S.); (A.D.)
| |
Collapse
|
15
|
Borjihan Q, Dong A. Design of nanoengineered antibacterial polymers for biomedical applications. Biomater Sci 2021; 8:6867-6882. [PMID: 32756731 DOI: 10.1039/d0bm00788a] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pathogenic bacteria have become global threats to public health. Since the advent of antibiotics about 100 years ago, their use has been embraced with great enthusiasm because of their effective treatment of bacterial infections. However, the evolution of pathogenic bacteria with resistance to conventional antibiotics has resulted in an urgent need for the development of a new generation of antibiotics. The use of antimicrobial polymers offers the promise of enhancing the efficacy of antimicrobial agents. Of the various antibacterial polymers that effectively eradicate pathogenic bacteria, those that are nanoengineered have garnered significant research interest in their design and biomedical applications. Because of their high surface area and high reactivity, these polymers show greater antibacterial activity than conventional antibacterial agents, by inhibiting the growth or destroying the cell membrane of pathogenic bacteria. This review summarizes several strategies for designing nanoengineered antibacterial polymers, explores the factors that affect their antibacterial properties, and examines key features of their design. It then comments briefly on the future prospects for nanoengineered antibacterial polymers. This review thus provides a feasible guide to developing nanoengineered antibacterial polymers by presenting both broad and in-depth bench research, and it offers suggestions for their potential in biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| | | |
Collapse
|
16
|
Tian C, Wu F, Jiao W, Liu X, Yin X, Si Y, Yu J, Ding B. Antibacterial and antiviral N-halamine nanofibrous membranes with nanonet structure for bioprotective applications. COMPOSITES COMMUNICATIONS 2021. [PMCID: PMC7879819 DOI: 10.1016/j.coco.2021.100668] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
17
|
Abstract
Pathogenic microbial contamination poses serious threats to human healthcare and economies worldwide, which instigates the booming development of challenging antibacterial materials. N-halamine fibrous materials (NFMs), as an important part of antibacterial materials, featuring structural continuity, good pore connectivity, rapid sterilization, rechargeable bactericidal activity, and safety to humans and environment, have received significant research attention. This review aims to present a systematic discussion of the recent advances in N-halamine antibacterial fibrous materials. We firstly introduce the chemical structures and properties of N-halamine materials. Subsequently, the developed NFMs can be categorized based on their fabrication strategies, including surface modification and one-step spinning. Then some representative applications of these fibrous materials are highlighted. Finally, challenges and future research directions of the materials are discussed in the hope of giving suggestions for the following studies. The chemical structures and properties of N-halamine materials are briefly introduced. Design and fabrication strategies of N-halamine fibrous materials are systematically reviewed. The functional applications of the N-halamine fibrous materials are discussed. Challenges and future research directions of the antibacterial N-halamine fibrous materials are provided.
Collapse
|
18
|
Shimada T, Yasui T, Yonese A, Yanagida T, Kaji N, Kanai M, Nagashima K, Kawai T, Baba Y. Mechanical Rupture-Based Antibacterial and Cell-Compatible ZnO/SiO 2 Nanowire Structures Formed by Bottom-Up Approaches. MICROMACHINES 2020; 11:E610. [PMID: 32599748 PMCID: PMC7345559 DOI: 10.3390/mi11060610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 01/05/2023]
Abstract
There are growing interests in mechanical rupture-based antibacterial surfaces with nanostructures that have little toxicity to cells around the surfaces; however, current surfaces are fabricated via top-down nanotechnologies, which presents difficulties to apply for bio-surfaces with hierarchal three-dimensional structures. Herein, we developed ZnO/SiO2 nanowire structures by using bottom-up approaches and demonstrated to show mechanical rupture-based antibacterial activity and compatibility with human cells. When Escherichia coli were cultured on the surface for 24 h, over 99% of the bacteria were inactivated, while more than 80% of HeLa cells that were cultured on the surface for 24 h were still alive. This is the first demonstration of mechanical rupture-based bacterial rupture via the hydrothermally synthesized nanowire structures with antibacterial activity and cell compatibility.
Collapse
Affiliation(s)
- Taisuke Shimada
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Takao Yasui
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
| | - Akihiro Yonese
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
| | - Takeshi Yanagida
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan;
| | - Noritada Kaji
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580, Japan;
| | - Kazuki Nagashima
- Japan Science and Technology Agency (JST), PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan;
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan;
| | - Tomoji Kawai
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan;
| | - Yoshinobu Baba
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan;
- Institute of Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
19
|
Xu J, Yang Y, Baigude H, Zhao H. New ferrocene-triazole derivatives for multisignaling detection of Cu 2+ in aqueous medium and their antibacterial activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117880. [PMID: 31836398 DOI: 10.1016/j.saa.2019.117880] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/13/2019] [Accepted: 11/29/2019] [Indexed: 06/10/2023]
Abstract
Ferrocene-based naphthalene or quinoline receptors 1-4 linked by triazole were designed and synthesized. Their recognition properties of metal cations have been investigated systematically in aqueous environment. Upon addition 1 equiv. of Cu2+ ion, receptors 1 (C23H19FeN3O) and 2 (C22H18FeN4O) showed fluorescent turn-off, enhanced absorption and color variations. At the same time, receptor 1 also caused the perturbation of redox potential after addition 1 equiv. of Cu2+ ion. Therefore, receptors 1 and 2 behaved as naked-eye chemosensors and fluorescent probes for Cu2+ without interference by other ions and with low detection limit. In addition, receptor 1 could also be considered electrochemical sensor for Cu2+ having excellent sensitivity and selectivity. However, increasing the molecules flexibility resulted in the lower selectivity of ion recognition in the case of receptors 3 (C24H21FeN3O) and 4 (C23H20FeN4O). Furthermore, this series of compounds were nontoxicity and receptor 1 exhibited certain antibacterial activity.
Collapse
Affiliation(s)
- Jianwei Xu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Yongqiang Yang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Huricha Baigude
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China
| | - Haiying Zhao
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China; Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot 010021, PR China.
| |
Collapse
|
20
|
Borjihan Q, Zhang Z, Zi X, Huang M, Chen Y, Zhang Y, Dong A. Pyrrolidone-based polymers capable of reversible iodine capture for reuse in antibacterial applications. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121305. [PMID: 31606708 DOI: 10.1016/j.jhazmat.2019.121305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Numerous emerging and re-emerging advanced materials have been successful in capturing iodine pollutants that pose an unprecedented global challenge to public health. However, little attention has been paid to the reutilization of the captured iodine. Herein, we report on a pyrrolidone-based polymer capable of reversible iodine capture for reutilization in antibacterial applications. The pyrrolidone-based polymer poly(N-vinyl-2-pyrrolidone-co-vinyl acetate), denoted as P(VAc-NVP), was synthesized facilely via a one-step radical copolymerization strategy, and the synthesis was regulated by step-by-step optimization, specifically by tuning the feed ratio of NVP to VAc. The as-synthesized P(VAc-NVP) copolymer functioned as an adsorbent for iodine in various solutions, including water/ethanol, cyclohexane, and petroleum ether, in addition to having the special capability of releasing iodine in the presence of starch or bacteria. This opens up a new horizon for its functional practical use as a flexible adsorbent to capture iodine for safe disposal. Interestingly, the P(VAc-NVP) copolymer, after adsorbing iodine, showed antibacterial ability against pathogenic bacteria, including Staphylococcus aureus and Escherichia coli, when a series of simulated and practical antibacterial assays were conducted. It is believed that this proposed strategy based on the synergism of iodine capture and antibacterial use should have great potential for environmental remediation and public healthcare.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Zhe Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Xinyuan Zi
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Mengxue Huang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yiqi Chen
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China; Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot 010021, People's Republic of China.
| |
Collapse
|
21
|
Wang F, Liu M, Ding R, Liang M, Huang L, Yu J, Si Y. Rechargeable Antibacterial Polysulfonamide-Based N-Halamine Nanofibrous Membranes for Bioprotective Applications. ACS APPLIED BIO MATERIALS 2019; 2:3668-3677. [DOI: 10.1021/acsabm.9b00537] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fei Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Mei Liu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruida Ding
- College of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mingguang Liang
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liqian Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Yang Si
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
22
|
Lan S, Lu Y, Zhang J, Guo Y, Li C, Zhao S, Sheng X, Dong A. Electrospun Sesbania Gum-Based Polymeric N-Halamines for Antibacterial Applications. Polymers (Basel) 2019; 11:E1117. [PMID: 31266230 PMCID: PMC6680915 DOI: 10.3390/polym11071117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Microorganism pollution induced by pathogens has become a serious concern in recent years. In response, research on antibacterial N-halamines has made impressive progress in developing ways to combat this pollution. While synthetic polymer-based N-halamines have been widely developed and in some cases even commercialized, N-halamines based on naturally occurring polymers remain underexplored. In this contribution, we report for the first time on a strategy for developing sesbania gum (SG)-based polymeric N-halamines by a four-step approach Using SG as the initial polymer, we obtained SG-based polymeric N-halamines (abbreviated as cSG-PAN nanofibers) via a step-by-step controllable synthesis process. With the assistance of advanced techniques, the as-synthesized cSG-PAN nanofibers were systematically characterized in terms of their chemical composition and morphology. In a series of antibacterial and cytotoxicity evaluations, the as-obtained cSG-PAN nanofibers displayed good antibacterial activity against Escherichia coli and Staphylococcus aureus, as well as low cytotoxicity towards A549 cells. We believe this study offers a guide for developing naturally occurring polymer-based antibacterial N-halamines that have great potential for antibacterial applications.
Collapse
Affiliation(s)
- Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yaning Lu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jinghua Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yanan Guo
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Chun Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Shuang Zhao
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
23
|
Lan S, Lu Y, Li C, Zhao S, Liu N, Sheng X. Sesbania Gum-Supported Hydrophilic Electrospun Fibers Containing Nanosilver with Superior Antibacterial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E592. [PMID: 30974842 PMCID: PMC6523858 DOI: 10.3390/nano9040592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 11/16/2022]
Abstract
In this contribution, we report for the first time on a new strategy for developing sesbania gum-supported hydrophilic fibers containing nanosilver using electrospinning (SG-Ag/PAN electrospun fibers), which gives the fibers superior antibacterial activity. Employing a series of advanced technologies-scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, UV-visible absorption spectroscopy, X-ray photoelectron spectroscopy, and contact angle testing-we characterized the as-synthesized SG-Ag/PAN electrospun fibers in terms of morphology, size, surface state, chemical composition, and hydrophilicity. By adjusting the synthesis conditions, in particular the feed ratio of sesbania gum (SG) and polyacrylonitrile (PAN) to Ag nanoparticles (NPs), we regulated the morphology and size of the as-electrospun fibers. The fibers' antibacterial properties were examined using the colony-counting method with two model bacteria: Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium). Interestingly, compared to Ag/PAN and SG-PAN electrospun fibers, the final SG-Ag/PAN showed enhanced antibacterial activity towards both of the model bacteria due to the combination of antibacterial Ag NPs and hydrophilic SG, which enabled the fibers to have sufficient contact with the bacteria. We believe this strategy has great potential for applications in antibacterial-related fields.
Collapse
Affiliation(s)
- Shi Lan
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Yaning Lu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Chun Li
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Shuang Zhao
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Naren Liu
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| | - Xianliang Sheng
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China.
| |
Collapse
|
24
|
Ramalingam R, Dhand C, Leung CM, Ezhilarasu H, Prasannan P, Ong ST, Subramanian S, Kamruddin M, Lakshminarayanan R, Ramakrishna S, Verma NK, Arunachalam KD. Poly-ε-Caprolactone/Gelatin Hybrid Electrospun Composite Nanofibrous Mats Containing Ultrasound Assisted Herbal Extract: Antimicrobial and Cell Proliferation Study. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E462. [PMID: 30897714 PMCID: PMC6474082 DOI: 10.3390/nano9030462] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 01/23/2023]
Abstract
Electrospun fibers have emerged as promising materials in the field of biomedicine, due to their superior physical and cell supportive properties. In particular, electrospun mats are being developed for advanced wound dressing applications. Such applications require the firers to possess excellent antimicrobial properties in order to inhibit potential microbial colonization from resident and non-resident bacteria. In this study, we have developed Poly-ε-Caprolactone /gelatin hybrid composite mats loaded with natural herbal extract (Gymnema sylvestre) to prevent bacterial colonization. As-spun scaffolds exhibited good wettability and desirable mechanical properties retaining their fibrous structure after immersing them in phosphate buffered saline (pH 7.2) for up to 30 days. The initial burst release of Gymnema sylvestre prevented the colonization of bacteria as confirmed by the radial disc diffusion assay. Furthermore, the electrospun mats promoted cellular attachment, spreading and proliferation of human primary dermal fibroblasts and cultured keratinocytes, which are crucial parenchymal cell-types involved in the skin recovery process. Overall these results demonstrated the utility of Gymnema sylvestre impregnated electrospun PCL/Gelatin nanofibrous mats as an effective antimicrobial wound dressing.
Collapse
Affiliation(s)
- Raghavendra Ramalingam
- Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Chetna Dhand
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| | - Chak Ming Leung
- Department of Biomedical Engineering, National University of Singapore, Singapore 117581, Singapore.
| | - Hariharan Ezhilarasu
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Praseetha Prasannan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Seow Theng Ong
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
| | - Sundarapandian Subramanian
- Department of Anatomy, SRM Medical College Hospital and Research Centre, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
| | - Mohammed Kamruddin
- Materials Physics Division, Material Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu 603102, India.
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Graduate Medical School, Singapore 169857, Singapore.
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, Department of Mechanical Engineering, Faculty of Engineering, 2 Engineering Drive 3, National University of Singapore, Singapore 117576, Singapore.
| | - Navin Kumar Verma
- Anti-Infectives Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Experimental Medicine Building, 59 Nanyang Drive, Singapore 636921, Singapore.
- Skin Research Institute of Singapore, 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore.
| | - Kantha Deivi Arunachalam
- Center for Environmental Nuclear Research, SRM Institute of Science and Technology, Kattankulathur Campus, Kancheepuram, Tamilnadu 603203, India.
| |
Collapse
|
25
|
Wang Y, Wen J, Ren X, Sun Y. Reactions of phenolic compounds with monomeric N-halamines and mesoporous material-supported N-halamines. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:651-658. [PMID: 30580139 DOI: 10.1016/j.jhazmat.2018.12.051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 12/07/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
The reactions of a monomeric N-halamine, 1-chloro-5,5-dimethylhydantoin (MCDMH), and a mesoporous material-supported N-halamine (MMSNs) with phenol and p-cresol (two common contaminants in water) were investigated. MCDMH reacted rapidly with the phenolic compounds, and pH values had little effects on the reactions. On the contrary, MMSNs reacted with phenol and p-cresol only when the pH values were higher than 10. Phenol showed a lower reaction rate than p-cresol toward MMSNs. GCMS analysis suggested that MMSNs might react with the phenolic compounds through step-wise electrophilic chlorination reactions, and the main product was 2,4,6-trichlorophenol. The reaction kinetics were studied by following the disappearance of phenolic UV absorption bands, and the kinetic parameters were determined.
Collapse
Affiliation(s)
- Yingfeng Wang
- Key Laboratory of Eco-Textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jianchuan Wen
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Xuehong Ren
- Key Laboratory of Eco-Textiles of Ministry of Education, College of Textiles and Clothing, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Yuyu Sun
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
26
|
Borjihan Q, Yang J, Song Q, Gao L, Xu M, Gao T, Liu W, Li P, Li Q, Dong A. Povidone-iodine-functionalized fluorinated copolymers with dual-functional antibacterial and antifouling activities. Biomater Sci 2019; 7:3334-3347. [DOI: 10.1039/c9bm00583h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Povidone-iodine-functionalized fluorinated polymer coatings with dual-functional antibacterial and antifouling activities should be very promising in practical biomedical applications.
Collapse
Affiliation(s)
- Qinggele Borjihan
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Jiebing Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Qing Song
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
| | - Lingling Gao
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Miao Xu
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Tianyi Gao
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Wenxin Liu
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| | - Peng Li
- Xi'an Institute of Flexible Electronics & Xi'an Institute of Biomedical Materials and Engineering
- Northwestern Polytechnical University (NPU)
- Xi'an 710072
- China
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM) Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM)
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education
- School of Life Sciences
- Jilin University
- Changchun 130012
- People's Republic of China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Hohhot 010021
- People's Republic of China
| |
Collapse
|
27
|
Liu C, Shan H, Chen X, Si Y, Yin X, Yu J, Ding B. Novel Inorganic-Based N-Halamine Nanofibrous Membranes As Highly Effective Antibacterial Agent for Water Disinfection. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44209-44215. [PMID: 30525383 DOI: 10.1021/acsami.8b18322] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Novel superhydrophilic inorganic-based N-halamine nanofibrous membranes with high active chlorine contents, outstanding rechargeability, favorable water swelling resistance, and superior mechanical performance were prepared through the combination of electrospinning and sol-gel processing, which could be applied to the dynamic disinfection of bacteria-contaminated water with high disinfection efficiency, large processing flux, and long-term durability. The successful preparation of such silica nanofiber membranous N-halamine antimicrobial with intriguing properties would provide the reference for developing novel antimicrobial nanofibers for multifunctional applications.
Collapse
Affiliation(s)
- Cui Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Haoru Shan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
| | - Xingxing Chen
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Yang Si
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Xia Yin
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles , Donghua University , Shanghai 201620 , China
- Innovation Center for Textile Science and Technology , Donghua University , Shanghai 200051 , China
| |
Collapse
|