1
|
Heydari P, Mojahedi M, Javaherchi P, Sharifi M, Kharazi AZ. Advances and impact of human amniotic membrane and human amniotic-based materials in wound healing application. Int J Biol Macromol 2024; 281:136596. [PMID: 39419158 DOI: 10.1016/j.ijbiomac.2024.136596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/19/2024]
Abstract
Wound healing is a complicated process, especially when surgical, traumatic, burn, or pathological injury occurs, which requires different kinds of dressing covers including hydrogels, hydrocolloids, alginates foams and films for treatment. The human amniotic membrane (hAM) is a biodegradable extracellular matrix with unique and tailorable physicochemical and biological properties, generated by the membrane itself or other cells that are located on the membrane surface. It is noted as a promising aid for wound healing and tissue regeneration due to the release of growth factors and cytokines, and its antibacterial and immunosuppressive properties. Moreover, hAM has optimal physical, biological, and mechanical properties, which makes it a much better option as a regenerative skin treatment than existing alternative materials. In addition, this layer has a structure with different layers and cells with different functions, which act as a regenerative geometry and reservoir of bioactive substances and cells for wound healing. In the present work, the structural and biological features of hAM are introduced as well as the application of this layer in different forms of composites to enhance wound healing. Future studies are recommended to detect possible further functionalization to enhance the hAM effectiveness on wound healing.
Collapse
Affiliation(s)
- Parisa Heydari
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maryam Mojahedi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pouya Javaherchi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maede Sharifi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Anousheh Zargar Kharazi
- Department of Biomaterials Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Applied Physiology Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
2
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024:10.1007/s00109-024-02493-x. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
3
|
Ding Y, Zhu Z, Zhang X, Wang J. Novel Functional Dressing Materials for Intraoral Wound Care. Adv Healthc Mater 2024; 13:e2400912. [PMID: 38716872 DOI: 10.1002/adhm.202400912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/05/2024] [Indexed: 05/22/2024]
Abstract
Intraoral wounds represent a particularly challenging category of mucosal and hard tissue injuries, characterized by the unique structures, complex environment, and distinctive healing processes within the oral cavity. They have a common occurrence yet frequently inflict significant inconvenience and pain on patients, causing a serious decline in the quality of life. A variety of novel functional dressings specifically designed for the moist and dynamic oral environment have been developed and realized accelerated and improved wound healing. Thoroughly analyzing and summarizing these materials is of paramount importance in enhancing the understanding and proficiently managing intraoral wounds. In this review, the particular processes and unique characteristics of intraoral wound healing are firstly described. Up-to-date knowledge of various forms, properties, and applications of existing products are then intensively discussed, which are categorized into animal products, plant extracts, natural polymers, and synthetic products. To conclude, this review presents a comprehensive framework of currently available functional intraoral wound dressings, with an aim to provoke inspiration of future studies to design more convenient and versatile materials.
Collapse
Affiliation(s)
- Yutang Ding
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
4
|
Gereka A, Urtaza U, Larreategi P, Prosper F, Andreu EJ, Zaldua AM. A Bioreactor for Celullarised Membrane Culture and Delivery under Sterile Conditions. Bioengineering (Basel) 2024; 11:785. [PMID: 39199743 PMCID: PMC11352111 DOI: 10.3390/bioengineering11080785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
A novel, user-friendly bioreactor for the cultivation of cellularised membranes for tissue engineering has been successfully designed, manufactured, and validated. This bioreactor features a culture vessel and a cover, the latter equipped with one or more sidewalls to ensure airtightness in two distinct zones, thereby maintaining sterile conditions. The cover, designed to integrate seamlessly with the culture vessel, includes several ports compatible with commercial connectors. This design allows the introduction of cells and culture medium without requiring the opening of the cover, thus preserving sterility. Additionally, the cover is equipped with flanges that effectively press the membrane against the bottom surface of the culture vessel, preventing it from shrinking or shifting. This ensures that cells can properly adhere to the membrane and proliferate. Manufactured under Good Manufacturing Practice (GMP) conditions, the bioreactor supports cultivation in optimal aseptic environments, thereby preventing external contamination. This feature is critical for the safe transportation of cultivated tissue to clinical settings. Validation tests have confirmed the bioreactor's excellent performance, endorsing its suitability for intended applications in tissue engineering.
Collapse
Affiliation(s)
- Ainitze Gereka
- Health Specialization, Leartiker S. Coop., 48270 Markina-Xemein, Spain; (A.G.); (U.U.); (P.L.)
| | - Uzuri Urtaza
- Health Specialization, Leartiker S. Coop., 48270 Markina-Xemein, Spain; (A.G.); (U.U.); (P.L.)
| | - Pablo Larreategi
- Health Specialization, Leartiker S. Coop., 48270 Markina-Xemein, Spain; (A.G.); (U.U.); (P.L.)
| | - Felipe Prosper
- Cell Therapy Area, Clinica Universidad de Navarra, 31008 Pamplona, Spain;
| | | | - Ane Miren Zaldua
- Health Specialization, Leartiker S. Coop., 48270 Markina-Xemein, Spain; (A.G.); (U.U.); (P.L.)
| |
Collapse
|
5
|
Guo XX, Pu Q, Chang XJ, Li AL, Hu JJ, Li XY. Therapeutic application of decellularized porcine small intestinal submucosa scaffold in conjunctiva reconstruction. Exp Eye Res 2024; 245:109953. [PMID: 38838974 DOI: 10.1016/j.exer.2024.109953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 03/10/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
The objective of this study was to investigate the biological feasibility and surgical applicability of decellularized porcine small intestinal submucosa (DSIS) in conjunctiva reconstruction. A total of 52 Balb/c mice were included in the study. We obtained the DSIS by decellularization, evaluated the physical and biological properties of DSIS in vitro, and further evaluated the effect of surgical transplantation of DSIS scaffold in vivo. The histopathology and ultrastructural analysis results showed that the scaffold retained the integrity of the fibrous morphology while removing cells. Biomechanical analysis showed that the elongation at break of the DSIS (239.00 ± 12.51%) were better than that of natural mouse conjunctiva (170.70 ± 9.41%, P < 0.05). Moreover, in vivo experiments confirmed the excellent biocompatibility of the decellularized scaffolds. In the DSIS group, partial epithelialization occurred at day-3 after operation, and the conjunctival injury healed at day-7, which was significantly faster than that in human amniotic membrane (AM) and sham surgery (SHAM) group (P < 0.05). The number and distribution of goblet cells of transplanted DSIS were significantly better than those of the AM and SHAM groups. Consequently, the DSIS scaffold shows excellent biological characteristics and surgical applicability in the mouse conjunctival defect model, and DSIS is expected to be an alternative scaffold for conjunctival reconstruction.
Collapse
Affiliation(s)
- Xiao-Xiao Guo
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Qi Pu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Xue-Jiao Chang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Ao-Ling Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Jing-Jie Hu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China
| | - Xin-Yu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Zhang T, Shao M, Li H, Chen X, Zhang R, Wu J, Wang J, Guo Y. Decellularized Amnion Membrane Triggers Macrophage Polarization for Desired Host Immune Response. Adv Healthc Mater 2024:e2402139. [PMID: 39039984 DOI: 10.1002/adhm.202402139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/11/2024] [Indexed: 07/24/2024]
Abstract
Appropriate regulation of immunomodulatory responses, particularly acute inflammation involving macrophages, is crucial for the desired functionality of implants. Decellularized amnion membrane (DAM) is produced by removing cellular components and antigenicity, expected to reduce immunogenicity and the risk of inflammation. Despite the potential of DAM as biomaterial implants, few studies have investigated its specific effects on immunomodulation. Here, it is demonstrated that DAM can regulate macrophage-driven inflammatory response and potential mechanisms are investigated. In vitro results show that DAM significantly inhibits M1 polarization in LPS-induced macrophages by inhibiting Toll-like receptors (TLR) signaling pathway and TNF signaling pathway and promotes macrophage M2 polarization. Physical signals from the 3D micro-structure and the active protein, DCN, binding to key targets may play roles in the process. In the subcutaneous implant model in rats, DAM inhibits the persistence of inflammation and fibrous capsule formation, while promoting M2 macrophage polarization, thereby facilitating tissue regeneration. This study provides insights into DAM's effect and potential mechanisms on the balance of M1/M2 macrophage polarization in vitro and vivo, emphasizing the immunomodulation of ECM-based materials as promising implants.
Collapse
Affiliation(s)
- Tong Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou, 310000, P. R. China
| | - Hanfeng Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ruiying Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingwen Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou, 310000, P. R. China
| | - Jianing Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yanchuan Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
7
|
Erkoc-Biradli FZ, Erenay B, Ozgun A, Öztatlı H, Işık F, Ateş U, Rasier R, Garipcan B. Mesenchymal stem cells derived-exosomes enhanced amniotic membrane extract promotes corneal keratocyte proliferation. Biotechnol Prog 2024; 40:e3465. [PMID: 38602120 DOI: 10.1002/btpr.3465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024]
Abstract
Amniotic membrane extract (AME) and Wharton's jelly mesenchymal stem cells derived-exosomes (WJ-MSC-Exos) are promising therapeutic solutions explored for their potential in tissue engineering and regenerative medicine, particularly in skin and corneal wound healing applications. AME is an extract form of human amniotic membrane and known to contain a plethora of cytokines and growth factors, making it a highly attractive option for topical applications. Similarly, WJ-MSC-Exos have garnered significant interest for their wound healing properties. Although WJ-MSC-Exos and AME have been used separately for wound healing research, their combined synergistic effects have not been studied extensively. In this study, we evaluated the effects of both AME and WJ-MSC-Exos, individually and together, on the proliferation of corneal keratocytes as well as their ability to promote in vitro cell migration, wound healing, and their impact on cellular morphology. Our findings indicated that the presence of both exosomes (3 × 105 Exo/mL) and AME (50 μg/mL) synergistically enhance the proliferation of corneal keratocytes. Combined use of these solutions (3 × 105 Exo/mL + 50 μg/mL) increased cell proliferation compared to only 50 μg/mL AME treatment on day 3 (**** p < 0.0001). This mixture treatment (3 × 105 Exo/mL + 50 μg/mL) increased wound closure rate compared to isolated WJ-MSC-Exo treatment (3 × 105 Exo/mL) (*p < 0.05). Overall, corneal keratocytes treated with AME and WJ-MSC-Exo (3 × 105 Exo/mL + 50 μg/mL) mixture resulted in enhanced proliferation and wound healing tendency. Utilization of combined use of AME and WJ-MSC-Exo can pave the way for a promising foundation for corneal repair research.
Collapse
Affiliation(s)
- Fatma Zehra Erkoc-Biradli
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Berkay Erenay
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Alp Ozgun
- Ottawa Hospital Research Institute, Ottawa, Canada
| | - Hayriye Öztatlı
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| | - Ferda Işık
- Stembio Cord Blood Cell & Tissue Center, Kocaeli, Turkey
| | - Utku Ateş
- Stembio Cord Blood Cell & Tissue Center, Kocaeli, Turkey
| | - Rıfat Rasier
- Department of Ophthalmology, İstinye University, Istanbul, Turkey
| | - Bora Garipcan
- Biomimetics and Bioinspired Biomaterials Research Laboratory, Institute of Biomedical Engineering, Bogaziçi University, Istanbul, Turkey
| |
Collapse
|
8
|
Guo X, Zhang W, Lu J, Zhu Y, Sun H, Xu D, Xian S, Yao Y, Qian W, Lu B, Shi J, Ding X, Li Y, Tong X, Xiao S, Huang R, Ji S. Amniotic miracle: Investigating the unique development and applications of amniotic membrane in wound healing. Skin Res Technol 2024; 30:e13860. [PMID: 39073182 DOI: 10.1111/srt.13860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 06/22/2024] [Indexed: 07/30/2024]
Abstract
BACKGROUND The perfect repair of damaged skin has always been a constant goal for scientists; however, the repair and reconstruction of skin is still a major problem and challenge in injury and burns medicine. Human amniotic membrane (hAM), with its good mechanical properties and anti-inflammatory, antioxidant and antimicrobial benefits, containing growth factors that promote wound healing, has evolved over the last few decades from simple skin sheets to high-tech dressings, such as being made into nanocomposites, hydrogels, powders, and electrostatically spun scaffolds. This paper aims to explore the historical development, applications, trends, and research hotspots of hAM in wound healing. METHODS We examined 2660 publications indexed in the Web of Science Core Collection (WoSCC) from January 1, 1975 to July 12, 2023. Utilizing bibliometric methods, we employed VOSviewer, CiteSpace, and R-bibliometrix to characterize general information, identify development trends, and highlight research hotspots. Subsequently, we identified a collection of high-quality English articles focusing on the roles of human amniotic epithelial stem cells (hAESCs), human amniotic mesenchymal stem cells (hAMSCs), and amniotic membrane (AM) scaffolds in regenerative medicine and tissue engineering. RESULTS Bibliometric analysis identified Udice-French Research Universities as the most productive affiliation and Tseng S.C.G. as the most prolific author. Keyword analysis, historical direct quotations network, and thematic analysis helped us review the historical and major themes in this field. Our examination included the knowledge structure, global status, trends, and research hotspots regarding the application of hAM in wound healing. Our findings indicate that contemporary research emphasizes the preparation and application of products derived from hAM. Notably, both hAM and the cells isolated from it - hADSCs and hAESCs are prominent and promising areas of research in regenerative medicine and tissue engineering. CONCLUSION This research delivers a comprehensive understanding of the knowledge frameworks, global dynamics, emerging patterns, and primary research foci in the realm of hAM applications for wound healing. The field is rapidly evolving, and our findings offer valuable insights for researchers. Future research outcomes are anticipated to be applied in clinical practice, enhancing methods for disease prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xinya Guo
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Wei Zhang
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Jianyu Lu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yushu Zhu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Hanlin Sun
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Dayuan Xu
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shuyuan Xian
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weijin Qian
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingnan Lu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiaying Shi
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyi Ding
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yixu Li
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Xirui Tong
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shichu Xiao
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| | - Shizhao Ji
- Department of Burn Surgery, Research Unit of key techniques for treatment of burns and combined burns and trauma injury, The First Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China, Chinese Academy of Medical Sciences, Shanghai, China
| |
Collapse
|
9
|
Pinky, Sharma A, Arora V, Rao EP, Arava S, Agrawal AK, Jassal M, Mohanty S. Modulating the hAM/PCL Biocomposite for Expedited Wound Healing: A Chemical-Free Approach for Boosting Regenerative Potential. ACS Biomater Sci Eng 2024; 10:3842-3854. [PMID: 38754076 DOI: 10.1021/acsbiomaterials.3c01740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
There is an arising need for effective wound dressings that retain the bioactivity of a cellular treatment, but without the high costs and complexities associated with manufacturing, storing, and applying cell-based products. As skin wound recovery is a dynamic and complicated process, a significant obstacle to the healing of skin wounds is the lack of an appropriate wound dressing that can imitate the microenvironment of healthy skin and prevent bacterial infection. It requires the well-orchestrated integration of biological and molecular events. In this study, we have fabricated full-thickness skin graft biocomposite membranes to target full-thickness skin excision wounds. We reinforced human amniotic membrane (hAM) with electrospun polycaprolactone (PCL) to develop composite membranes, namely, PCL/hAM and PCL/hAM/PCL. Composite membranes were compared for physical, biological, and mechanical properties with the native counterpart. PCL/hAM and PCL/hAM/PCL displayed improved stability and delayed degradation, which further synergically improved the rapid wound healing property of hAM, driven primarily by wound closure analysis and histological assessment. Moreover, PCL/hAM displayed a comparable cellular interaction to hAM. On application as a wound dressing, histological analysis demonstrated that hAM and PCL/hAM promoted early epidermis and dermis formation. Studies on in vivo wound healing revealed that although hAM accelerates cell development, the overall wound healing process is similar in PCL/hAM. This finding is further supported by the immunohistochemical analysis of COL-1/COL-3, CD-31, and TGF-β. Overall, this conjugated PCL and hAM-based membrane has considerable potential to be applied in skin wound healing. The facile fabrication of the PCL/hAM composite membrane provided the self-regenerating wound dressing with the desired mechanical strength as an ideal regenerative property for skin tissue regeneration.
Collapse
Affiliation(s)
- Pinky
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Aarushi Sharma
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Varun Arora
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - E Pranshu Rao
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Sudheer Arava
- Department of Pathology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashwini K Agrawal
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Manjeet Jassal
- SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujata Mohanty
- Stem Cell Facility, DBT-Centre of Excellence for Stem Cell Research, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
10
|
Botelho T, Kawata BA, Móbille Awoyama S, Laurindo Igreja Marrafa PA, Carvalho HC, de Lima CJ, Barrinha Fernandes A. Sterilization of Human Amniotic Membrane Using an Ozone Hydrodynamic System. Ann Biomed Eng 2024; 52:1425-1434. [PMID: 38411861 DOI: 10.1007/s10439-024-03467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/02/2024] [Indexed: 02/28/2024]
Abstract
Human amniotic membrane (hAM) is an important biomaterial for Tissue Engineering, due to its great regenerative properties and potential use as a scaffold. The most used procedure to sterilize biomaterials is gamma-irradiation, but this method can affect several properties, causing damage to the structure and reducing the growth factors. The present work evaluated the efficiency of a new method based on ozonated dynamic water for hAM sterilization. HAM fragments were experimentally contaminated with Staphylococcus aureus, Escherichia coli, Candida albicans, Staphylococcus epidermidis, and Clostridium sporogenes (106 CFU/mL) and submitted to sterilization process for 5, 10 and 15 min. The analyses did not reveal microbial activity after 10 min for S. aureus and C. sporogenes and after 15 min for E. coli and S. epidermidis. The microbial activity of C. albicans was reduced with the exposure time increase, but the evaluated time was insufficient for complete sterilization. The depyrogenation process was investigated for different ozonation times (15, 20, 25, 30, and 35 min) to evaluate the ozone sterilization potential and presented promising results after 35 min. The ozone effect on hAM structure was evaluated by histological analysis. A decrease in epithelium average thickness was observed with the exposure time increase. Furthermore, some damage in the epithelium was observed when hAM was exposed for 10 and 15 min. It can indicate that ozone, besides being effective in sterilization, could promote the hAM sample's de-epithelization, becoming a possible new method for removing the epithelial layer to use hAM as a scaffold.
Collapse
Affiliation(s)
- Túlia Botelho
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Faculdade Santo Antônio - FSA, Caçapava, SP, Brazil
| | - Bianca Akemi Kawata
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil.
- Universidade Anhembi Morumbi - UAM, Biomedical Engineering Institute, São Paulo, SP, 04546-001, Brazil.
| | - Silvia Móbille Awoyama
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Centro Universitário FUNVIC - UNIFUNVIC, College of Pharmacy, Pindamonhangaba, SP, 12412-825, Brazil
| | - Pedro Augusto Laurindo Igreja Marrafa
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Universidade Anhembi Morumbi - UAM, Biomedical Engineering Institute, São Paulo, SP, 04546-001, Brazil
| | - Henrique Cunha Carvalho
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Universidade Tecnológica Federal do Paraná - UTFPR, Campo Mourão, PR, 87301-899, Brazil
| | - Carlos José de Lima
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Universidade Anhembi Morumbi - UAM, Biomedical Engineering Institute, São Paulo, SP, 04546-001, Brazil
| | - Adriana Barrinha Fernandes
- Center for Innovation, Technology and Education - CITÉ, Parque de Inovação Tecnológica de São José dos Campos, São José dos Campos, SP, 12247-016, Brazil
- Universidade Anhembi Morumbi - UAM, Biomedical Engineering Institute, São Paulo, SP, 04546-001, Brazil
| |
Collapse
|
11
|
Perez JV, Basra M, Patel K, Ganey T, Finstein L. The Use of Human Amniotic Membrane Tissue Grafting in Acute Traumatic Finger Injury: A Case Report. Cureus 2024; 16:e56177. [PMID: 38618339 PMCID: PMC11015912 DOI: 10.7759/cureus.56177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Human amniotic membrane (hAM) is a collagen-based extracellular matrix that facilitates regenerative wound care. hAM offers several advantageous properties that promote epithelial cell growth, granulation, and angiogenesis. This case report demonstrates how Vivex Cygnus Matrix (Vivex Biologics, Miami, FL, USA) amniotic membrane was used over four weeks to graft a traumatic index finger injury that occurred while fishing. Cygnus Matrix allograft was first placed 72 hours after the accident. Following graft placement, the patient noted an immediate relief in pain and was able to return to all normal daily work activities within 48 hours of graft placement. Granulation tissue appeared a few days later. A total of four grafts were placed over the course of four weeks starting on September 4th, 2023. Typically, acute traumatic wounds are managed with a regimen of irrigation, wound dressing, and debridement. In this unique case, a distal fingertip amputation was treated with Cygnus Matrix allograft. A single hAM was applied weekly over the course of four weeks. Complete reepithelization of the injury was achieved with minimal scar formation. This paper demonstrates the use of hAM in healing acute traumatic wounds as an effective alternative to other more traditional treatments such as skin grafting, surgical reimplantation, and composite grafting. Utilization of hAM in acute traumatic wounds has few research reports that assure that the applications have minimal drawbacks while at the same time promoting wound management and patient comfort.
Collapse
Affiliation(s)
- Jose V Perez
- Wound Care, Curisec Wound Physicians, Miami, USA
| | - Mahi Basra
- Osteopathic Medicine, Nova Southeastern University, Clearwater, USA
| | - Krina Patel
- Osteopathic Medicine, Nova Southeastern University, Miami, USA
| | | | | |
Collapse
|
12
|
Kafili G, Niknejad H, Tamjid E, Simchi A. Amnion-derived hydrogels as a versatile platform for regenerative therapy: from lab to market. Front Bioeng Biotechnol 2024; 12:1358977. [PMID: 38468689 PMCID: PMC10925797 DOI: 10.3389/fbioe.2024.1358977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/09/2024] [Indexed: 03/13/2024] Open
Abstract
In recent years, the amnion (AM) has emerged as a versatile tool for stimulating tissue regeneration and has been of immense interest for clinical applications. AM is an abundant and cost-effective tissue source that does not face strict ethical issues for biomedical applications. The outstanding biological attributes of AM, including side-dependent angiogenesis, low immunogenicity, anti-inflammatory, anti-fibrotic, and antibacterial properties facilitate its usage for tissue engineering and regenerative medicine. However, the clinical usage of thin AM sheets is accompanied by some limitations, such as handling without folding or tearing and the necessity for sutures to keep the material over the wound, which requires additional considerations. Therefore, processing the decellularized AM (dAM) tissue into a temperature-sensitive hydrogel has expanded its processability and applicability as an injectable hydrogel for minimally invasive therapies and a source of bioink for the fabrication of biomimetic tissue constructs by recapitulating desired biochemical cues or pre-defined architectural design. This article reviews the multi-functionality of dAM hydrogels for various biomedical applications, including skin repair, heart treatment, cartilage regeneration, endometrium regeneration, vascular graft, dental pulp regeneration, and cell culture/carrier platform. Not only recent and cutting-edge research is reviewed but also available commercial products are introduced and their main features and shortcomings are elaborated. Besides the great potential of AM-derived hydrogels for regenerative therapy, intensive interdisciplinary studies are still required to modify their mechanical and biological properties in order to broaden their therapeutic benefits and biomedical applications. Employing additive manufacturing techniques (e.g., bioprinting), nanotechnology approaches (e.g., inclusion of various bioactive nanoparticles), and biochemical alterations (e.g., modification of dAM matrix with photo-sensitive molecules) are of particular interest. This review article aims to discuss the current function of dAM hydrogels for the repair of target tissues and identifies innovative methods for broadening their potential applications for nanomedicine and healthcare.
Collapse
Affiliation(s)
- Golara Kafili
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Tamjid
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Abdolreza Simchi
- Center for Nanoscience and Nanotechnology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
- Center for Bioscience and Technology, Institute for Convergence Science and Technology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
13
|
Izumi K, Yortchan W, Aizawa Y, Kobayashi R, Hoshikawa E, Ling Y, Suzuki A. Recent trends and perspectives in reconstruction and regeneration of intra/extra-oral wounds using tissue-engineered oral mucosa equivalents. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:365-374. [PMID: 37954029 PMCID: PMC10632115 DOI: 10.1016/j.jdsr.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 11/14/2023] Open
Abstract
Many conditions, including cancer, trauma, and congenital anomalies, can damage the oral mucosa. Multiple cultures of oral mucosal cells have been used for biocompatibility tests and oral biology studies. In recent decades, the clinical translation of tissue-engineered products has progressed significantly in developing tangible therapies and inspiring advancements in medical science. However, the reconstruction of an intraoral mucosa defect remains a significant challenge. Despite the drawbacks of donor-site morbidity and limited tissue supply, the use of autologous oral mucosa remains the gold standard for oral mucosa reconstruction and repair. Tissue engineering offers a promising solution for repairing and reconstructing oral mucosa tissues. Cell- and scaffold-based tissue engineering approaches have been employed to treat various soft tissue defects, suggesting the potential clinical use of tissue-engineered oral mucosa (TEOMs). In this review, we first cover the recent trends in the reconstruction and regeneration of extra-/intra-oral wounds using TEOMs. Next, we describe the current status and challenges of TEOMs. Finally, future strategic approaches and potential technologies to support the advancement of TEOMs for clinical use are discussed.
Collapse
Affiliation(s)
- Kenji Izumi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Witsanu Yortchan
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Department of Preventive Dentistry, Faculty of Dentistry, Naresuan University, Phitsanulok, Thailand
| | - Yuka Aizawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Ryota Kobayashi
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Oral and Maxillofacial Surgery, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Emi Hoshikawa
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
- Division of Periodontology, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| | - Yiwei Ling
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ayako Suzuki
- Division of Biomimetics, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Japan
| |
Collapse
|
14
|
Zamani M, Zahedian A, Tanideh N, Khodabandeh Z, Koohpeyma F, Khazraei H, Zare S, Zarei M, Hosseini SV. Comparison effect of collagen/P3HB composite scaffold and human amniotic membrane loaded with mesenchymal stem cells on colon anastomosis healing in male rats. Biochem Biophys Res Commun 2023; 682:281-292. [PMID: 37832385 DOI: 10.1016/j.bbrc.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023]
Abstract
Covering surgical wounds with biomaterials, biologic scaffolds, and mesenchymal stem cells (MSCs) improves the healing process and reduces postoperative complications. This study was designed to evaluate and compare the effect of MSC-free/MSC-seeded new collagen/poly(3-hydroxybutyrate) (COL/P3HB) composite scaffold and human amniotic membrane (HAM) on the colon anastomosis healing process. COL/P3HB scaffold was prepared using freeze-drying method. MSCs were isolated and characterized from rat adipose tissue. After biocompatibility evaluation by MTT assay, MSCs were seeded on the scaffold and HAM by micro-mass seeding technique. In total, 35 male rats were randomly divided into five groups. After the surgical procedure, cecum incisions were covered by the MSC-free/MSC-seeded scaffold or HAM. Incisions in the control group were only sutured. One month later, the healing process was determined by stereological analysis. The Kruskal-Wallis followed by Dunn's tests were utilized for statistical outcome analysis (SPSS software version 21). COL/10% P3HB scaffold showed the best mechanical and structural properties (7.86 MPa strength, porosity more than 75%). MTT assay indicated that scaffold and especially HAM have suitable biocompatibility. Collagenization and neovascularization were significantly higher, and necrosis was considerably lower in all treated groups in comparison with the controls. MSC-seeded scaffold and HAM significantly decrease inflammation and increase gland volume compared with other groups. The MSC-seeded HAM was significantly successful in decreasing edema compared with other groups. Newly synthesized COL/P3HB scaffold improves the colon anastomosis healing; however, the major positive effect belonged to HAM. MSCs remarkably increase their healing process. Further investigations may contribute to confirming these results in other wound healing.
Collapse
Affiliation(s)
- Mozhdeh Zamani
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Zahedian
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nader Tanideh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Khazraei
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Moein Zarei
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; West Pomeranian University of Technology, Szczecin, Department of Polymer and Biomaterials Science, Al. Piastow 45, 71-311, Szczecin, Poland.
| | - Seyed Vahid Hosseini
- Colorectal Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
15
|
Chi M, Yuan B, Xie Z, Hong J. The Innovative Biomaterials and Technologies for Developing Corneal Endothelium Tissue Engineering Scaffolds: A Review and Prospect. Bioengineering (Basel) 2023; 10:1284. [PMID: 38002407 PMCID: PMC10669703 DOI: 10.3390/bioengineering10111284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/21/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Corneal transplantation is the only treatment for corneal endothelial blindness. However, there is an urgent need to find substitutes for corneal endothelium grafts due to the global shortage of donor corneas. An emerging research field focuses on the construction of scaffold-based corneal endothelium tissue engineering (CETE). Long-term success in CETE transplantation may be achieved by selecting the appropriate biomaterials as scaffolds of corneal endothelial cells and adding bioactive materials to promote cell activity. This article reviews the research progress of CETE biomaterials in the past 20 years, describes the key characteristics required for corneal endothelial scaffolds, and summarizes the types of materials that have been reported. Based on these, we list feasible improvement strategies for biomaterials innovation. In addition, we describe the improved techniques for the scaffolds' surface topography and drug delivery system. Some promising technologies for constructing CETE are proposed. However, some questions have not been answered yet, and clinical trials and industrialization should be carried out with caution.
Collapse
Affiliation(s)
- Miaomiao Chi
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Bowei Yuan
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Zijun Xie
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| | - Jing Hong
- Department of Ophthalmology, Peking University Third Hospital, Beijing 100191, China; (M.C.); (B.Y.); (Z.X.)
- Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing 100191, China
| |
Collapse
|
16
|
Hu Z, Luo Y, Ni R, Hu Y, Yang F, Du T, Zhu Y. Biological importance of human amniotic membrane in tissue engineering and regenerative medicine. Mater Today Bio 2023; 22:100790. [PMID: 37711653 PMCID: PMC10498009 DOI: 10.1016/j.mtbio.2023.100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023] Open
Abstract
The human amniotic membrane (hAM) is the innermost layer of the placenta. Its distinctive structure and the biological and physical characteristics make it a highly biocompatible material in a variety of regenerative medicine applications. It also acts as a supply of bioactive factors and cells, which indicate the advantages over other tissues. In this review, we firstly discussed the biological properties of hAM-derived cells in vivo or in vitro, along with their stemness of markers, pointing out a promising source of stem cells for regenerative medicine. Then, we systematically summarized current knowledge on the collection, preparation, preservation, and decellularization of hAM, as well as their characteristics helping to improve the understanding of applications in tissue engineering. Finally, we highlighted the recent advances in which hAM has undergone additional modifications to achieve an adequate perspective of regenerative medicine applications. More investigations are required in utilizing appropriate modifications to enhance the therapeutic effectiveness of hAM in the future.
Collapse
Affiliation(s)
- Zeming Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Luo
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Renhao Ni
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
17
|
Fenelon M, Galvez P, Kalbermatten D, Scolozzi P, Madduri S. Emerging Strategies for the Biofabrication of Multilayer Composite Amniotic Membranes for Biomedical Applications. Int J Mol Sci 2023; 24:14424. [PMID: 37833872 PMCID: PMC10572287 DOI: 10.3390/ijms241914424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The amniotic membrane (AM) is the innermost part of the fetal placenta, which surrounds and protects the fetus. Due to its structural components (stem cells, growth factors, and proteins), AMs display unique biological properties and are a widely available and cost-effective tissue. As a result, AMs have been used for a century as a natural biocompatible dressing for healing corneal and skin wounds. To further increase its properties and expand its applications, advanced hybrid materials based on AMs have recently been developed. One existing approach is to combine the AM with a secondary material to create composite membranes. This review highlights the increasing development of new multilayer composite-based AMs in recent years and focuses on the benefits of additive manufacturing technologies and electrospinning, the most commonly used strategy, in expanding their use for tissue engineering and clinical applications. The use of AMs and multilayer composite-based AMs in the context of nerve regeneration is particularly emphasized and other tissue engineering applications are also discussed. This review highlights that these electrospun multilayered composite membranes were mainly created using decellularized or de-epithelialized AMs, with both synthetic and natural polymers used as secondary materials. Finally, some suggestions are provided to further enhance the biological and mechanical properties of these composite membranes.
Collapse
Affiliation(s)
- Mathilde Fenelon
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.F.); (P.S.)
- INSERM, BIOTIS, U1026, Université de Bordeaux, 33076 Bordeaux, France;
| | - Paul Galvez
- INSERM, BIOTIS, U1026, Université de Bordeaux, 33076 Bordeaux, France;
| | - Daniel Kalbermatten
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| | - Paolo Scolozzi
- Division of Oral and Maxillofacial Surgery, Department of Surgery, Geneva University Hospitals, 1205 Geneva, Switzerland; (M.F.); (P.S.)
| | - Srinivas Madduri
- Plastic, Reconstructive and Aesthetic Surgery Division, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland;
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, Geneva University Hospitals and University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
18
|
Li Y, An S, Deng C, Xiao S. Human Acellular Amniotic Membrane as Skin Substitute and Biological Scaffold: A Review of Its Preparation, Preclinical Research, and Clinical Application. Pharmaceutics 2023; 15:2249. [PMID: 37765218 PMCID: PMC10534359 DOI: 10.3390/pharmaceutics15092249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Human acellular amniotic membrane (HAAM) has emerged as a promising tool in the field of regenerative medicine, particularly for wound healing and tissue regeneration. HAAM provides a natural biological scaffold with low immunogenicity and good anti-infective and anti-scarring results. Despite its potential, the clinic application of HAAM faces challenges, particularly with respect to the preparation methods and its low mechanical strength. This review provides a comprehensive overview of HAAM, covering its preparation, sterilization, preclinical research, and clinical applications. This review also discusses promising decellularization and sterilization methods, such as Supercritical Carbon Dioxide (SC-CO2), and the need for further research into the regenerative mechanisms of HAAM. In addition, we discuss the potential of HAAM as a skin dressing and cell delivery system in preclinical research and clinical applications. Both the safety and effectiveness of HAAM have been validated by extensive research, which provides a robust foundation for its clinical application.
Collapse
Affiliation(s)
- Yanqi Li
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
| | - Siyu An
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Chengliang Deng
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| | - Shune Xiao
- Department of Burns and Plastic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China;
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi 563000, China;
| |
Collapse
|
19
|
Arki MK, Moeinabadi-Bidgoli K, Hossein-Khannazer N, Gramignoli R, Najimi M, Vosough M. Amniotic Membrane and Its Derivatives: Novel Therapeutic Modalities in Liver Disorders. Cells 2023; 12:2114. [PMID: 37626924 PMCID: PMC10453134 DOI: 10.3390/cells12162114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
The liver is a vital organ responsible for metabolic and digestive functions, protein synthesis, detoxification, and numerous other necessary functions. Various acute, chronic, and neoplastic disorders affect the liver and hamper its biological functions. Most of the untreated liver diseases lead to inflammation and fibrosis which develop into cirrhosis. The human amniotic membrane (hAM), the innermost layer of the fetal placenta, is composed of multiple layers that include growth-factor rich basement membrane, epithelial and mesenchymal stromal cell layers. hAM possesses distinct beneficial anti-fibrotic, anti-inflammatory and pro-regenerative properties via the secretion of multiple potent trophic factors and/or direct differentiation into hepatic cells which place hAM-based therapies as potential therapeutic strategies for the treatment of chronic liver diseases. Decellularized hAM is also an ideal scaffold for liver tissue engineering as this biocompatible niche provides an excellent milieu for cell proliferation and hepatocytic differentiation. Therefore, the current review discusses the therapeutic potential of hAM and its derivatives in providing therapeutic solutions for liver pathologies including acute liver failure, metabolic disorders, liver fibrosis as well as its application in liver tissue engineering.
Collapse
Affiliation(s)
- Mandana Kazem Arki
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1546815514, Iran;
| | - Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden;
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institute of Experimental and Clinical Research (IREC), UCLouvain, B-1200 Brussels, Belgium
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| |
Collapse
|
20
|
Zhang Y, Zhang C, Li Y, Zhou L, Dan N, Min J, Chen Y, Wang Y. Evolution of biomimetic ECM scaffolds from decellularized tissue matrix for tissue engineering: A comprehensive review. Int J Biol Macromol 2023; 246:125672. [PMID: 37406920 DOI: 10.1016/j.ijbiomac.2023.125672] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/18/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Tissue engineering is essentially a technique for imitating nature. Natural tissues are made up of three parts: extracellular matrix (ECM), signaling systems, and cells. Therefore, biomimetic ECM scaffold is one of the best candidates for tissue engineering scaffolds. Among the many scaffold materials of biomimetic ECM structure, decellularized ECM scaffolds (dECMs) obtained from natural ECM after acellular treatment stand out because of their inherent natural components and microenvironment. First, an overview of the family of dECMs is provided. The principle, mechanism, advances, and shortfalls of various decellularization technologies, including physical, chemical, and biochemical methods are then critically discussed. Subsequently, a comprehensive review is provided on recent advances in the versatile applications of dECMs including but not limited to decellularized small intestinal submucosa, dermal matrix, amniotic matrix, tendon, vessel, bladder, heart valves. And detailed examples are also drawn from scientific research and practical work. Furthermore, we outline the underlying development directions of dECMs from the perspective that tissue engineering scaffolds play an important role as an important foothold and fulcrum at the intersection of materials and medicine. As scaffolds that have already found diverse applications, dECMs will continue to present both challenges and exciting opportunities for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chenyu Zhang
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuwen Li
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyan Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Nianhua Dan
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jie Min
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yining Chen
- Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China; Research Center of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wang Jiang Road, Chengdu 610065, China
| |
Collapse
|
21
|
Peng L, Liang Y, Yue J, Li H, Deng A, Xie S, Tang XZ, Wang J, Mao Z. Dramatic improvement in the mechanical properties of polydopamine/polyacrylamide hydrogel mediated human amniotic membrane. RSC Adv 2023; 13:3635-3642. [PMID: 36756590 PMCID: PMC9875367 DOI: 10.1039/d2ra07622e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/27/2023] Open
Abstract
Human amniotic membrane (hAM) is a promising material for tissue engineering due to several benefits, including desirable biocompatibility, stem cell source, antibacterial activity, etc. However, because of its low elasticity, the clinical application of hAM is severely restricted. To solve this issue, we employed polydopamine/polyacrylamide (PDA/PAM) hydrogels to toughen hAM. The test results indicated that the PDA/PAM hydrogel can enhance the toughness of hAM dramatically due to the formation of abundant chemical bonds and the strong mechanical properties of the hydrogel itself. Compared to pure hAM, the break elongation and tensile strength of PDA/PAM-toughened hAM rose by 154.15 and 492.31%, respectively. And most importantly, the fracture toughness was almost 15 times higher than untreated hAM. In addition, the cytotoxicity of the PDA/PAM-coated hAM was not detected due to the superior biocompatibility of the chemicals used in the study. Treating hAM with adhesive hydrogels to increase its mechanical characteristics will further promote the application of hAM as a tissue engineering material.
Collapse
Affiliation(s)
- Lin Peng
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Yufei Liang
- Powder Metallurgy Research Institute, Central South UniversityChangsha410083China
| | - Jianling Yue
- Powder Metallurgy Research Institute, Central South UniversityChangsha410083China
| | - Hanmei Li
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Aimin Deng
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Shun Xie
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| | - Xiu-Zhi Tang
- Research Institute of Aerospace Technology, Central South UniversityChangsha410083China
| | - Jing Wang
- Department of Pathology, Xiangya Hospital, Central South University Changsha 410083 China
| | - Zenghui Mao
- Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University Changsha 410083 China
| |
Collapse
|
22
|
Biological Scaffolds for Congenital Heart Disease. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010057. [PMID: 36671629 PMCID: PMC9854830 DOI: 10.3390/bioengineering10010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023]
Abstract
Congenital heart disease (CHD) is the most predominant birth defect and can require several invasive surgeries throughout childhood. The absence of materials with growth and remodelling potential is a limitation of currently used prosthetics in cardiovascular surgery, as well as their susceptibility to calcification. The field of tissue engineering has emerged as a regenerative medicine approach aiming to develop durable scaffolds possessing the ability to grow and remodel upon implantation into the defective hearts of babies and children with CHD. Though tissue engineering has produced several synthetic scaffolds, most of them failed to be successfully translated in this life-endangering clinical scenario, and currently, biological scaffolds are the most extensively used. This review aims to thoroughly summarise the existing biological scaffolds for the treatment of paediatric CHD, categorised as homografts and xenografts, and present the preclinical and clinical studies. Fixation as well as techniques of decellularisation will be reported, highlighting the importance of these approaches for the successful implantation of biological scaffolds that avoid prosthetic rejection. Additionally, cardiac scaffolds for paediatric CHD can be implanted as acellular prostheses, or recellularised before implantation, and cellularisation techniques will be extensively discussed.
Collapse
|
23
|
Tan Q, Le H, Tang C, Zhang M, Yang W, Hong Y, Wang X. Tailor-made natural and synthetic grafts for precise urethral reconstruction. J Nanobiotechnology 2022; 20:392. [PMID: 36045428 PMCID: PMC9429763 DOI: 10.1186/s12951-022-01599-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
Injuries to the urethra can be caused by malformations, trauma, inflammation, or carcinoma, and reconstruction of the injured urethra is still a significant challenge in clinical urology. Implanting grafts for urethroplasty and end-to-end anastomosis are typical clinical interventions for urethral injury. However, complications and high recurrence rates remain unsatisfactory. To address this, urethral tissue engineering provides a promising modality for urethral repair. Additionally, developing tailor-made biomimetic natural and synthetic grafts is of great significance for urethral reconstruction. In this work, tailor-made biomimetic natural and synthetic grafts are divided into scaffold-free and scaffolded grafts according to their structures, and the influence of different graft structures on urethral reconstruction is discussed. In addition, future development and potential clinical application strategies of future urethral reconstruction grafts are predicted.
Collapse
Affiliation(s)
- Qinyuan Tan
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Hanxiang Le
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, People's Republic Of China
| | - Chao Tang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Ming Zhang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Weijie Yang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China
| | - Yazhao Hong
- Department of Pediatric Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Street, Nanjing, 210029, People's Republic Of China.
| | - Xiaoqing Wang
- Department of Urology, The First Hospital of Jilin University, 1 Xinmin Street, Changchun, 130061, People's Republic Of China.
| |
Collapse
|
24
|
Wells HC, Sizeland KH, Kirby N, Haverkamp RG. Structure and Strength of Bovine and Equine Amniotic Membrane. BIOLOGY 2022; 11:biology11081096. [PMID: 35892952 PMCID: PMC9329871 DOI: 10.3390/biology11081096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Thin, strong scaffold materials are needed for surgical applications. There is a limited selection of available materials and new materials are required. Amnionic membrane from cattle and horses were investigated for this purpose. The structure of these materials was characterized with synchrotron techniques and the strength was measured. A possible relationship between the structure and strength was identified. These amnion materials from animal sources are strong, thin, and elastic materials, although weaker than some other collagen tissues. They may be suitable for use in surgery as an alternative to material from human donors. Abstract Thin, strong scaffold materials are needed for surgical applications. New materials are required, particularly those readily available, such as from non-human sources. Bovine amniotic membrane (antepartum) and equine amniotic membrane (postpartum) were characterized with tear and tensile tests. The structural arrangement of the collagen fibrils was determined by small-angle X-ray scattering, scanning electron microscopy, and ultrasonic imaging. Bovine amnion had a thickness-normalized tear strength of 12.6 (3.8) N/mm, while equine amnion was 14.8 (5.3) N/mm. SAXS analysis of the collagen fibril arrangement yielded an orientation index of 0.587 (0.06) and 0.681 (0.05) for bovine and equine, respectively. This may indicate a relationship between more highly aligned collagen fibrils and greater strength, as seen in other materials. Amnion from bovine or equine sources are strong, thin, elastic materials, although weaker than other collagen tissue materials commonly used, that may find application in surgery as an alternative to material from human donors.
Collapse
Affiliation(s)
- Hannah C. Wells
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
| | - Katie H. Sizeland
- ANSTO, Lucas Heights, NSW 2234, Australia;
- ANSTO, Clayton, VIC 3168, Australia;
| | | | - Richard G. Haverkamp
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
- Correspondence:
| |
Collapse
|
25
|
Dong Q, Wu D, Li M, Dong W. Polysaccharides, as biological macromolecule-based scaffolding biomaterials in cornea tissue engineering: A review. Tissue Cell 2022; 76:101782. [PMID: 35339801 DOI: 10.1016/j.tice.2022.101782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
Corneal-related diseases and injuries are the leading causes of vision loss, estimated to affect over 10 million people worldwide. Currently, cadaveric corneal grafts are considered the gold standard of treatment to restore cornea-related vision. However, this treatment modality faces different challenges such as donor shortage and graft failure. Therefore, the need for alternative solutions continues to grow. Tissue engineering has dramatically progressed to produce artificial cornea implants in order to repair, regenerate, or replace the damaged cornea. In this regard, a variety of polysaccharides such as cellulose, chitosan, alginate, agarose, and hyaluronic acid have been widely explored as scaffolding biomaterials for the production of tissue-engineered cornea. These polymers are known for their excellent biocompatibility, versatile properties, and processability. Recent progress and future perspectives of polysaccharide-based biomaterials in cornea tissue engineering is reviewed here.
Collapse
Affiliation(s)
- Qiwei Dong
- School of medicine, University of Electronic Science and Technology of China, Chengdu 610072, Sichuan, China
| | - Dingkun Wu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, Liaoning, China, 116024
| | - Moqiu Li
- Center for Cancer Prevention Research, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Wei Dong
- School of Mathematics Sciences, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
26
|
Ashouri S, Hosseini SA, Hoseini SJ, Tara F, Ebrahimzadeh-Bideskan A, Webster TJ, Kargozar S. Decellularization of human amniotic membrane using detergent-free methods: Possibilities in tissue engineering. Tissue Cell 2022; 76:101818. [DOI: 10.1016/j.tice.2022.101818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/12/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
|
27
|
Chen F, Deng J, Luo L, Zhu Y, Dong Y, Yang Y, Zhang R, Chen J, Zhou Q. Crosslinked Decellularized Porcine Pericardium as a Substrate for Conjunctival Reconstruction. Stem Cells Int 2022; 2022:7571146. [PMID: 35342430 PMCID: PMC8941537 DOI: 10.1155/2022/7571146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 11/18/2022] Open
Abstract
Seeking for suitable conjunctival reconstruction substitutes to overcome the limitations of current substitutes, such as amniotic membrane, is urgent. Decellularized tissues have become a promising strategy for tissue engineering. In this study, we prepared decellularized porcine pericardium (DPP) scaffolds by the phospholipase A2 method and crosslinked them with aspartic acid (Asp) and human endothelial growth factor (hEGF) to enhance biological performance on the DPP, obtaining DPP-Asp-hEGF scaffolds. In vitro DPP showed lower apoptosis, highly desirable, well preservation of extracellular matrix components, and favorable macro-microstructure, which was confirmed by histology, immunofluorescence, electron microscopy, collagen and DNA quantification, and cytotoxicity assay, compared to the native porcine pericardium (NPP). The crosslinked efficacy of the DPP-Asp-hEGF was furtherer verified by in vitro experiments with Fourier transform infrared (FTIR) and X-ray diffraction (XRD). Through animal models of conjunctiva defect model, the DPP-Asp-hEGF revealed a closed, multilayer epithelium with an equal amount of goblet cells and no indication for conjunctival scarring after 28 days, compared to amniotic membrane (AM) groups and sham groups. These results suggested that DPP-Asp-hEGF can offer a good conjunctival reconstructive substitute both in structure and in function.
Collapse
Affiliation(s)
- Fangyuan Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jingyue Deng
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- The Fifth Affiliated Hospital of Southern Medical University, Guangzhou 510900, China
| | - Lishi Luo
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
- Shenzhen Eye Hospital, Affiliated Hospital of Jinan University, Shenzhen 518040, China
| | - Ying Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuying Dong
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Yuanting Yang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Rijia Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Jian Chen
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Qing Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| |
Collapse
|
28
|
Sarvari R, Keyhanvar P, Agbolaghi S, Roshangar L, Bahremani E, Keyhanvar N, Haghdoost M, Keshel SH, Taghikhani A, Firouzi N, Valizadeh A, Hamedi E, Nouri M. A comprehensive review on methods for promotion of mechanical features and biodegradation rate in amniotic membrane scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:32. [PMID: 35267104 PMCID: PMC8913518 DOI: 10.1007/s10856-021-06570-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 06/07/2021] [Indexed: 06/14/2023]
Abstract
Amniotic membrane (AM) is a biological tissue that surrounds the fetus in the mother's womb. It has pluripotent cells, immune modulators, collagen, cytokines with anti-fibrotic and anti-inflammatory effect, matrix proteins, and growth factors. In spite of the biological characteristics, some results have been released in preventing the adhesion on traumatized surfaces. Application of the AM as a scaffold is limited due to its low biomechanical resistance and rapid biodegradation. Therefore, for using the AM during surgery, its modification by different methods such as cross-linking of the membrane collagen is necessary, because the cross-linking is an effective way to reduce the rate of biodegradation of the biological materials. In addition, their cross-linking is likely an efficient way to increase the tensile properties of the material, so that they can be easily handled or sutured. In this regard, various methods related to cross-linking of the AM subsuming the composite materials, physical cross-linking, and chemical cross-linking with the glutraldehyde, carbodiimide, genipin, aluminum sulfate, etc. are reviewed along with its advantages and disadvantages in the current work.
Collapse
Affiliation(s)
- Raana Sarvari
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Peyman Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Nanotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Convergence of Knowledge, Technology and Society Network (CKTSN), Universal Scientific Education and Research Network (USERN), Tabriz, Iran.
- ARTAN1100 Startup Accelerator, Tabriz, Iran.
| | - Samira Agbolaghi
- Chemical Engineering Department, Faculty of Engineering, Azarbaijan Shahid Madani University, P.O. BOX: 5375171379, Tabriz, Iran
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Erfan Bahremani
- Alavi Ophthalmological Treatment and Educational Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Keyhanvar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Gene Yakhteh Keyhan (Genik) Company (Ltd), Pharmaceutical Biotechnology Incubator, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Haghdoost
- Department of Infectious Diseases, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Heidari Keshel
- Medical Nanotechnology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afsaneh Taghikhani
- Department of Chemistry, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Nima Firouzi
- Stem Cell and Tissue Engineering Research Laboratory, Chemical Engineering Faculty, Sahand University of Technology, P.O.BOX:51335-1996, Tabriz, Iran
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon Eugene, OR, 97403, USA
| | - Amir Valizadeh
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Hamedi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Nouri
- Stem Cell And Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
29
|
Rohringer S, Schneider KH, Eder G, Hager P, Enayati M, Kapeller B, Kiss H, Windberger U, Podesser BK, Bergmeister H. Chorion-derived extracellular matrix hydrogel and fibronectin surface coatings show similar beneficial effects on endothelialization of expanded polytetrafluorethylene vascular grafts. Mater Today Bio 2022; 14:100262. [PMID: 35509865 PMCID: PMC9059097 DOI: 10.1016/j.mtbio.2022.100262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
The endothelium plays an important regulatory role for cardiovascular homeostasis. Rapid endothelialization of small diameter vascular grafts (SDVGs) is crucial to ensure long-term patency. Here, we assessed a human placental chorionic extracellular matrix hydrogel (hpcECM-gel) as coating material and compared it to human fibronectin in-vitro. hpcECM-gels were produced from placental chorion by decellularization and enzymatic digestion. Human umbilical vein endothelial cells (HUVECs) were seeded to non-, fibronectin- or hpcECM-gel-coated expanded polytetrafluorethylene (ePTFE) SDVGs. Coating efficiency as well as endothelial cell proliferation, migration and adhesion studies on grafts were performed. hpcECM-gel depicted high collagen and glycosaminoglycan content and neglectable DNA amounts. Laminin and fibronectin were both retained in the hpcECM-gel after the decellularization process. HUVEC as well as endothelial progenitor cell attachment were both significantly enhanced on hpcECM-gel coated grafts. HUVECs seeded to hpcECM-gel depicted significantly higher platelet endothelial cell adhesion molecule-1 (PECAM-1) expression in the perinuclear region. Cell retention to flow was enhanced on fibronectin and hpcECM-gel coated grafts. Since hpcECM-gel induced a significantly higher endothelial cell adhesion to ePTFE than fibronectin, it represents a possible alternative for SDVG modification to improve endothelialization.
Collapse
Affiliation(s)
- Sabrina Rohringer
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Karl H. Schneider
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Gabriela Eder
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Pia Hager
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Marjan Enayati
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Barbara Kapeller
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Herbert Kiss
- Medical University of Vienna, Department of Obstetrics and Gynaecology, Division of Obstetrics and Feto-Maternal Medicine, Währinger Gürtel 18-20, 1090, Vienna, Austria
| | - Ursula Windberger
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Bruno K. Podesser
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Helga Bergmeister
- Medical University of Vienna, Center for Biomedical Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Währinger Gürtel 18-20, 1090, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
30
|
Hussain NA, Figueiredo FC, Connon CJ. Use of biomaterials in corneal endothelial repair. Ther Adv Ophthalmol 2022; 13:25158414211058249. [PMID: 34988369 PMCID: PMC8721373 DOI: 10.1177/25158414211058249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human corneal endothelium (HCE) is a single layer of hexagonal cells that lines the posterior surface of the cornea. It forms the barrier that separates the aqueous humor from the rest of the corneal layers (stroma and epithelium layer). This layer plays a fundamental role in maintaining the hydration and transparency of the cornea, which in turn ensures a clear vision. In vivo, human corneal endothelial cells (HCECs) are generally believed to be nonproliferating. In many cases, due to their nonproliferative nature, any damage to these cells can lead to further issues with Descemet’s membrane (DM), stroma and epithelium which may ultimately lead to hazy vision and blindness. Endothelial keratoplasties such as Descemet’s stripping automated endothelial keratoplasty (DSAEK) and Descemet’s membrane endothelial keratoplasty (DEK) are the standard surgeries routinely used to restore vision following endothelial failure. Basically, these two similar surgical techniques involve the replacement of the diseased endothelial layer in the center of the cornea by a healthy layer taken from a donor cornea. Globally, eye banks are facing an increased demand to provide corneas that have suitable features for transplantation. Consequently, it can be stated that there is a significant shortage of corneal grafting tissue; for every 70 corneas required, only 1 is available. Nowadays, eye banks face long waiting lists due to shortage of donors, seriously aggravated when compared with previous years, due to the global COVID-19 pandemic. Thus, there is an urgent need to find alternative and more sustainable sources for treating endothelial diseases, such as utilizing bioengineering to use of biomaterials as a remedy. The current review focuses on the use of biomaterials to repair the corneal endothelium. A range of biomaterials have been considered based on their promising results and outstanding features, including previous studies and their key findings in the context of each biomaterial.
Collapse
Affiliation(s)
- Noor Ahmed Hussain
- University of Jeddah, Jeddah, Saudi ArabiaBiosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Francisco C Figueiredo
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UKDepartment of Ophthalmology, Royal Victoria Infirmary, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Che J Connon
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
31
|
Anderson LE, Pearson JJ, Brimeyer AL, Temenoff JS. Injection of Micronized Human Amnion/Chorion Membrane Results in Increased Early Supraspinatus Muscle Regeneration in a Chronic Model of Rotator Cuff Tear. Ann Biomed Eng 2021; 49:3698-3710. [PMID: 34766224 DOI: 10.1007/s10439-021-02880-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 10/18/2021] [Indexed: 01/08/2023]
Abstract
Surgical repair of severe rotator cuff tear often results in retear due to unaddressed muscle degeneration. The objective of this study was to test the regenerative potential of micronized dehydrated Human Amnion/Chorion Membrane (dHACM), in a clinically relevant delayed reattachment model of rotator cuff repair. Micronized dHACM was injected into rat supraspinatus muscle during tendon re-attachment surgery, three weeks after original tendon injury. One week after material injection, inflammatory and mesenchymal stem cell infiltration into supraspinatus muscles was assessed via flow cytometry. Histological methods were utilized to assess structural and regenerative changes in muscle one and three weeks after material injection. Micronized dHACM injection resulted in increased M1-like macrophages (17.1 [Formula: see text] fold change over contralateral controls) and regenerating muscle fibers (4.3% vs 1.7% in saline treated muscles) one week after injection compared to saline treated muscles. Tendon reattachment itself exhibited intrinsic healing in this model, demonstrated by a general return of muscle weight and reduced fibrosis. Our results indicate that injection of micronized dHACM may initiate an inflammatory response in degenerated muscle that promotes early muscle regeneration, and that our animal model may be a suitable platform for studying treatments in muscle at early timepoints, before intrinsic healing occurs.
Collapse
Affiliation(s)
- Leah E Anderson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Joseph J Pearson
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Alexandra L Brimeyer
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, 315 Ferst Dr., Atlanta, GA, 30332, USA
| | - Johnna S Temenoff
- Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech, Emory University, 315 Ferst Dr., Atlanta, GA, 30332, USA.
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
32
|
Hadipour A, Bayati V, Rashno M, Orazizadeh M. Aligned Poly(ε-caprolactone) Nanofibers Superimposed on Decellularized Human Amniotic Membrane Promoted Myogenic Differentiation of Adipose Derived Stem Cells. CELL JOURNAL 2021; 23:603-611. [PMID: 34939752 PMCID: PMC8665975 DOI: 10.22074/cellj.2021.7261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 06/10/2020] [Indexed: 11/29/2022]
Abstract
Objective This study was designed to fabricate a suitable permanent scaffold for the normal aligned myotube formation
and improve the process of myogenic differentiation of selected stem cells.
Materials and Methods In this experimental study, an engineered scaffold composed of decellularized human amniotic
membrane (DHAM) and electrospun fibers of poly(ε-caprolactone) (PCL) was fabricated and characterized. PCL
nanofibers were superimposed on DHAM (PCL-DHAM) in two different patterns, including randomized fibers (Random)
and aligned fibers (Aligned). Adipose derived stem cells (ADSCs) were isolated from adult Wistar rats and cultured on
designed scaffold and induced to myotube differentiation. Using an MTT assay, the vitality of cells was determined.
Then, myogenic cell differentiation was assessed using scan electron microscopy (SEM), immunofluorescence assay,
and reverse transcription-polymerase chain reaction (RT-PCR).
Results The mechanical properties of engineered PCL-DHAM composite improved significantly compared to DHAM
as a control. The engineered PCL-DHAM promoted cell growth and high expression of myosin, Mhc2 and myogenin
and thus enhanced the myotube formation.
Conclusion These findings revealed that bio-composite membrane prepared from PCL nanofibers and DHAM, may
represent a promising biomaterial as a desirable scaffold for applying in the bioengineered muscle repair.
Collapse
Affiliation(s)
- Azam Hadipour
- Cellular and Molecular Research Center (CMRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center (CMRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Cellular and Molecular Research Center (CMRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center (CMRC), Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
33
|
Da LC, Huang YZ, Xie HQ, Zheng BH, Huang YC, Du SR. Membranous Extracellular Matrix-Based Scaffolds for Skin Wound Healing. Pharmaceutics 2021; 13:1796. [PMID: 34834211 PMCID: PMC8620109 DOI: 10.3390/pharmaceutics13111796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023] Open
Abstract
Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor mechanical properties, the uncontrollable degradation, and other factors after implantation. To highlight the feasible strategies to overcome the limitations, in this review, we first outline the current clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce the possible repair mechanisms; then, we discuss their potential limitations and further summarize recent advances in the scaffold modification and fabrication technologies that have been applied to engineer new ECM-based membranes. With the development of scaffold modification approaches, nanotechnology and material manufacturing techniques, various types of advanced ECM-based membranes have been reported in the literature. Importantly, they possess much better properties for skin wound healing, and would become promising candidates for future clinical translation.
Collapse
Affiliation(s)
- Lin-Cui Da
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yi-Zhou Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, China;
| | - Bei-Hong Zheng
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| | - Yong-Can Huang
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China;
| | - Sheng-Rong Du
- Center of Reproductive Medicine, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; (L.-C.D.); (B.-H.Z.)
| |
Collapse
|
34
|
Cheng C, Peng X, Qi H, Wang X, Yu X, Wang Y, Yu X. A promising potential candidate for vascular replacement materials with anti-inflammatory action, good hemocompatibility and endotheliocyte-cytocompatibility: phytic acid-fixed amniotic membrane. Biomed Mater 2021; 16. [PMID: 34492639 DOI: 10.1088/1748-605x/ac246d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/07/2021] [Indexed: 12/29/2022]
Abstract
Due to its excellent biocompatibility and anti-inflammatory activity, amniotic membrane (AM) has attracted much attention from scholars. However, its clinical application in vascular reconstruction was limited for poor processability, rapid biodegradation, and insufficient hemocompatibility. A naturally extracted substance with good cytocompatibility, phytic acid (PA), which can quickly form strong and stable hydrogen bonds on the tissue surface, was used to crosslink decellularized AM (DAM) to prepare a novel vascular replacement material. The results showed that PA-fixed AM had excellent mechanical strength and resistance to enzymatic degradation as well as appropriate surface hydrophilicity. Among all samples, 2% PA-fixed specimen showed excellent human umbilical vein endothelial cells (HUVECs)-cytocompatibility and hemocompatibility. It could also stimulate the secretion of vascular endothelial growth factor and endothelin-1 from seeded HUVECs, indicating that PA might promote neovascularization after implantation of PA-fixed specimens. Also, 2% PA-fixed specimen could inhibit the secretion of tumor necrosis factor-αfrom co-cultured macrophages, thus might reduce the inflammatory response after sample implantation. Finally, the results ofex vivoblood test andin vivoexperiments confirmed our deduction that PA might promote neovascularization after implantation. All the results indicated that prepared PA-fixed DAM could be considered as a promising small-diameter vascular replacement material.
Collapse
Affiliation(s)
- Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xu Peng
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, People's Republic of China
| | - Hao Qi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xu Wang
- Chengdu University of TCM, College of Acupuncture and Massage College, No. 37, Twelve Bridge Road, Chengdu, Sichuan Province 610075, People's Republic of China
| | - Xiaoshuang Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Yuhang Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, People's Republic of China
| |
Collapse
|
35
|
DEMİR S, ERTÜRK A, ZENGİN M, YILDIZ D, KARAHAN S, ŞENEL E. Contribution of amniotic membrane to the healing of iatrogenic vas deferens injury. Turk J Med Sci 2021; 51:1564-1571. [PMID: 33726480 PMCID: PMC8283458 DOI: 10.3906/sag-2012-287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/14/2021] [Indexed: 11/26/2022] Open
Abstract
Background/aim Iatrogenic vas deferens injury is one of the most serious complications of operations in the inguinal region. Vasovasostomy is performed as treatment. However, stenosis is common after vasovasostomy. Oligospermia or azoospermia may develop and result in infertility. This study aimed to investigate the effect of amniotic membrane on healing in vas deferens injuries. Materials and methods Four groups consisting of 10 rats each were formed. No procedure was performed in Group-I. In Group- II, the left vas deferens was transected and left to spontaneous healing. In Group-III, the left vas deferens was transected, and end- to-end anastomosis was performed. In Group-IV, the left vas deferens was transected, end-to-end anastomosis was performed, and it was closed with a wrapping of amniotic membrane on the anastomosis line. Rats were sacrificed after 60 days, and each left vas deferens was evaluated. Lumen patency was checked by passing methylene blue through the vas deferens. Subsequently, the vas deferens was evaluated both macroscopically and histopathologically. Data were evaluated using SPSS version 21.0. p < 0.05 was considered statistically significant for all variables. Results The anastomosis lines in Group-IV healed better than those in Group-III, and less stenosis was observed. There were differences between the groups in terms of luminal patency (p = 0.009), adhesions to surrounding tissues (p = 0.02) and separation of the ends of the vas deferens (p = 0.03). Conclusion We observed improvement on luminal patency and histology of rat vas deferens injury after surrounding human amniotic membrane on the transected and repaired surface. Further studies are needed to apply this promising result on human beings.
Collapse
Affiliation(s)
- Sabri DEMİR
- Department of Pediatric Surgery, Faculty of Medicine, KırıkkaleUniversity, KırıkkaleTurkey
- Department of Pediatric Surgery, Children Hospital, Ankara City Hospital, AnkaraTurkey
| | - Ahmet ERTÜRK
- Department of Pediatric Surgery, Faculty of Medicine, KırıkkaleUniversity, KırıkkaleTurkey
- Department of Pediatric Surgery, Children Hospital, Ankara City Hospital, AnkaraTurkey
| | - Mehmet ZENGİN
- Department of Pathology, Faculty of Medicine, KırıkkaleUniversity, KırıkkaleTurkey
| | - Dinçer YILDIZ
- Department of Anatomy, Faculty of Veterinary, Kırıkkale University, KırıkkaleTurkey
| | - Siyami KARAHAN
- Department of Hystology, Faculty of Veterinary, Kırıkkale University, KırıkkaleTurkey
| | - Emrah ŞENEL
- Department of Pediatric Surgery, Faculty of Medicine, Yıldırım Beyazıt University, AnkaraTurkey
| |
Collapse
|
36
|
Abstract
Abstract
The rapid development of nanotechnology paved the way for further expansion of polymer chemistry and the fabrication of advanced polymeric membranes. Such modifications allowed enhancing or adding some unique properties, including mechanical strength, excellent biocompatibility, easily controlled degradability, and biological activity. This chapter discusses various applications of polymeric membranes in three significant areas of biomedicine, including tissue engineering, drug delivery systems, and diagnostics. It is intended to highlight here possible ways of improvement the properties of polymeric membranes, by modifying with other polymers, functional groups, compounds, drugs, bioactive components, and nanomaterials.
Collapse
Affiliation(s)
- Marta J. Woźniak-Budych
- NanoBioMedical Centre , Adam Mickiewicz University , Wszechnicy Piastowskiej 3 , Poznań 61-614 , Poland
| |
Collapse
|
37
|
Applications of Human Amniotic Membrane for Tissue Engineering. MEMBRANES 2021; 11:membranes11060387. [PMID: 34070582 PMCID: PMC8227127 DOI: 10.3390/membranes11060387] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/17/2022]
Abstract
An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Human amniotic membrane (hAM) is considered as a surgical waste without ethical issue, so it is a highly abundant, cost-effective, and readily available biomaterial. It has biocompatibility, low immunogenicity, adequate mechanical properties (permeability, stability, elasticity, flexibility, resorbability), and good cell adhesion. It exerts anti-inflammatory, antifibrotic, and antimutagenic properties and pain-relieving effects. It is also a source of growth factors, cytokines, and hAM cells with stem cell properties. This important source for scaffolding material has been widely studied and used in various areas of tissue repair: corneal repair, chronic wound treatment, genital reconstruction, tendon repair, microvascular reconstruction, nerve repair, and intraoral reconstruction. Depending on the targeted application, hAM has been used as a simple scaffold or seeded with various types of cells that are able to grow and differentiate. Thus, this natural biomaterial offers a wide range of applications in TE applications. Here, we review hAM properties as a biocompatible and degradable scaffold. Its use strategies (i.e., alone or combined with cells, cell seeding) and its degradation rate are also presented.
Collapse
|
38
|
Evaluation of Fibroblast Viability Seeded on Acellular Human Amniotic Membrane. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5597758. [PMID: 34124249 PMCID: PMC8169243 DOI: 10.1155/2021/5597758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/01/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023]
Abstract
Background Investigating the viability and proliferative rates of fibroblast cells on human amniotic membrane (HAM) as a scaffold will be an important subject for further research. The aim of this study was to assess the fibroblast viability seeded on acellular HAM, since foreskin neonatal allogenic fibroblasts seeded on HAM accelerate the wound healing process. Methods Fibroblasts were retrieved from the foreskin of a genetically healthy male infant, and we exploited AM of healthy term neonates to prepare the amniotic scaffold for fibroblast transfer. After cell culture, preparation of acellular HAM, and seeding of cells on HAM based on the protocol, different methods including 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 4′,6-Diamidino-2-phenylindole dihydrochloride (DAPI), and propidium iodide (PI) staining were employed for assessment of fibroblast viability on HAM. Results Based on the results obtained from the DAPI and PI staining, the percentage of viable cells in the former staining was clearly higher than that of the dead cells in the latter one. The results of DAPI and PI staining were in accordance with the findings of MTT assay, confirming that fibroblasts were viable and even proliferate on HAM. Conclusion Our findings showed the viability of fibroblasts seeded on the acellular HAM using MTT assay, DAPI, and PI staining; however, this study had some limitations. It would be an interesting subject for future research to compare the viability and proliferation rate of fibroblasts seeded on both cellular and acellular HAM.
Collapse
|
39
|
Go YY, Chae SW, Song JJ. Osteogenic effects of exosomes derived from human chorion membrane extracts. Biomater Res 2021; 25:16. [PMID: 33957991 PMCID: PMC8101178 DOI: 10.1186/s40824-021-00218-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/22/2021] [Indexed: 01/03/2023] Open
Abstract
Objective Human chorion membrane extracts (CME) are known to exhibit osteogenic effects when used for treating human osteoblast-like cells (MG63 cells), but the active compound in CME remains unknown. The aim of this study was to identify the presence of exosomes in CME and to determine the osteogenic effect of CME exosomes on MG63 cells. Methods Exosomes were isolated from human placenta CME using the ExoQuick-TC solution and were characterized. The activity and deposition of alkaline phosphatase (ALP) on MG63 cells cultured with or without exosomes in osteogenic induction medium (OIM) were determined. Human amniotic membrane extracts (AME) were used as controls as they had not affected the osteogenic differentiation of MG63 cells in our previous study. Results Transmission electron microscopy (TEM) revealed that exosomes isolated from CME and AME (CME-Exo and AME-Exo, respectively) had a cup-shaped structure. NanoSight™ particle tracking analysis (NTA) confirmed that the size of these exosomes was 100–150 nm. In vitro osteogenic experiments demonstrated that the exosomes from CME, but not those from AME, presented increased alkaline phosphatase (ALP) activity and resulted in the mineralization of MG63 cells in a dose-dependent manner. Conclusion Exosomes were identified in CME and AME from the human placenta. Further, the exosomes from CME were found to be capable of promoting osteogenic differentiation, suggesting that exosomes are a key component of CME that stimulate the osteogenesis of human osteoblast-like cells. CME exosomes can be developed as promising therapeutic candidates for bone regeneration. Supplementary Information The online version contains supplementary material available at 10.1186/s40824-021-00218-6.
Collapse
Affiliation(s)
- Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea.,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Republic of Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University Guro Hospital, 80 Guro-dong, Guro-gu, Seoul, 08308, Republic of Korea. .,Institute for Health Care Convergence Center, Korea University Guro Hospital, Seoul, 08308, Republic of Korea.
| |
Collapse
|
40
|
Pourjabbar B, Biazar E, Heidari Keshel S, Ahani-Nahayati M, Baradaran-Rafii A, Roozafzoon R, Alemzadeh-Ansari MH. Bio-polymeric hydrogels for regeneration of corneal epithelial tissue*. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1909586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Bahareh Pourjabbar
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Biazar
- Tissue Engineering group, Department of Biomedical Engineering, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Saeed Heidari Keshel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Ahani-Nahayati
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Reza Roozafzoon
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Hasan Alemzadeh-Ansari
- Ophthalmic Research Center, Department of Ophthalmology, Labbafinejad Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Zhang Q, Chang C, Qian C, Xiao W, Zhu H, Guo J, Meng Z, Cui W, Ge Z. Photo-crosslinkable amniotic membrane hydrogel for skin defect healing. Acta Biomater 2021; 125:197-207. [PMID: 33676048 DOI: 10.1016/j.actbio.2021.02.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/06/2021] [Accepted: 02/25/2021] [Indexed: 01/23/2023]
Abstract
The human amniotic membrane (HAM) collagen matrix derived from human placenta can be decellularized (dHAM) to form a natural biocompatible material. dHAM has different bioactive substances and has been used widely in human tissue engineering research. However, dHAM has some disadvantages, e.g., poor mechanical properties, easy degradation and inconvenient operation and use, so it is not conducive to large-area or full-thickness skin defect healing. To overcome these limitations, for the first time, dHAM was grafted with methacrylic anhydride (MA) to form photocrosslinked dHAM methacrylate (dHAMMA); dHAMMA was then blended with methacrylated gelatin (GelMA), followed by the addition of a photosensitizer for photocrosslinking to obtain the fast-forming GelMA-dHAMMA composite hydrogel. Further, GelMA-dHAMMA was found to have the porous structure of a bicomponent polymer network and good physical and chemical properties. In vitro experiments, GelMA-dHAMMA was found to promote fibroblast proliferation and α-smooth muscle actin (α-SMA) expression. In vivo investigations also demonstrated that GelMA-dHAMMA promotes wound collagen deposition and angiogenesis, and accelerates tissue healing. GelMA-dHAMMA inherits the good mechanical properties of GelMA and maintains the biological activity of the amniotic membrane, promoting the reconstruction and regeneration of skin wounds. Thus, GelMA-dHAMMA can serve as a promising biomaterial in skin tissue engineering. STATEMENT OF SIGNIFICANCE: Since the early 20th century, the human amniotic membrane (HAM) has been successfully used for trauma treatment and reconstruction purposes. dHAM has different bioactive substances and has been used widely in human tissue-engineering research. In this work, the dHAM and gelatin were grafted and modified by using methacrylic anhydride (MA) to form photocrosslinked dHAMMA and methacrylated gelatin (GelMA). Then, the dHAMMA and GelMA were blended with a photosensitizer to form the GelMA-dHAMMA composite hydrogel derived from gelatin-dHAM. GelMA-dHAMMA exhibits a bicomponent-network (BCN) interpenetrating structure. dHAM dydrogel has advantages, e.g., good mechanical properties, slow degradation and convenient operation, so it is conducive to large-area or full-thickness skin defect healing.
Collapse
|
42
|
Siddika A, Arifuzzaman M, Hossain L, Adnan MH, Diba F, Hasan MZ, Asaduzzaman S, Uddin MJ. Assortment of Human Amniotic Membrane and Curcumin: a Potential Therapeutic Strategy for Burn Wound Healing. CURRENT DRUG THERAPY 2021. [DOI: 10.2174/1574885515999200706013824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Burn wound associated injury management is one of the major unresolved clinical concerns.
Most of the drugs and dressing materials available in the market cause dose escalation and
even exert side effects. Besides, a severe burn injury is susceptible to microbial infection that leads
to the prolonged hospital stay, which ultimately causes a financial crisis to the victims. To get rid of
this problem, researchers are being interested in developing such materials that are cost-effective,
easily available and accelerate faster healing. Human amniotic membrane (AM) and various herbal
extracts like curcumin are a potential source of burn wound healing. AM has various healing properties
and is being used as the best burn wound dressing material for centuries. Similarly, curcumin
has been proven as a faster dressing material for the treatment of burn injury. Since both AM and
curcumin are a potential source of burn and wound healing, if a gel/agent could be formulated by
mixing these two things, this combination may be a potential therapeutic strategy to treat burn
wound healing.
Collapse
Affiliation(s)
- Ayesha Siddika
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Md. Arifuzzaman
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Liakat Hossain
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Md. Hasib Adnan
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Farzana Diba
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Md. Zahid Hasan
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - S.M. Asaduzzaman
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment (AERE), Savar, Dhaka- 1349,Bangladesh
| | - Md. Jamal Uddin
- ABEx Bio-Research Center, East Azampur, Uttara, Dhaka-1230,Bangladesh
| |
Collapse
|
43
|
Leal-Marin S, Kern T, Hofmann N, Pogozhykh O, Framme C, Börgel M, Figueiredo C, Glasmacher B, Gryshkov O. Human Amniotic Membrane: A review on tissue engineering, application, and storage. J Biomed Mater Res B Appl Biomater 2020; 109:1198-1215. [PMID: 33319484 DOI: 10.1002/jbm.b.34782] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/07/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
Human amniotic membrane (hAM) has been employed as scaffolding material in a wide range of tissue engineering applications, especially as a skin dressing and as a graft for corneal treatment, due to the structure of the extracellular matrix and excellent biological properties that enhance both wound healing and tissue regeneration. This review highlights recent work and current knowledge on the application of native hAM, and/or production of hAM-based tissue-engineered products to create scaffolds mimicking the structure of the native membrane to enhance the hAM performance. Moreover, an overview is presented on the available (cryo) preservation techniques for storage of native hAM and tissue-engineered products that are necessary to maintain biological functions such as angiogenesis, anti-inflammation, antifibrotic and antibacterial activity.
Collapse
Affiliation(s)
- Sara Leal-Marin
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Thomas Kern
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Nicola Hofmann
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Olena Pogozhykh
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Carsten Framme
- Department of Ophthalmology, University Eye Hospital, Hannover Medical School, Hannover, Germany
| | - Martin Börgel
- German Society for Tissue Transplantation (DGFG), Hannover, Germany
| | - Constanca Figueiredo
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Hannover, Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| | - Oleksandr Gryshkov
- Institute for Multiphase Processes, Leibniz University Hannover, Garbsen, Germany
| |
Collapse
|
44
|
Sabouri L, Farzin A, Kabiri A, Milan PB, Farahbakhsh M, Mehdizadehkashi A, Kajbafzadeh A, Samadikuchaksaraei A, Yousefbeyk F, Azami M, Moghtadaei M. Mineralized Human Amniotic Membrane as a Biomimetic Scaffold for Hard Tissue Engineering Applications. ACS Biomater Sci Eng 2020; 6:6285-6298. [PMID: 33449643 DOI: 10.1021/acsbiomaterials.0c00881] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The human amniotic membrane (HAM) has been viewed as a potential regenerative material for a wide variety of injured tissues because of its collagen-rich content. High degradability of HAM limits its wide practical application in bone tissue engineering. In this study, the natural matrix of the decellularized amniotic membrane was developed by the double diffusion method. The results confirmed a reduction of the amniotic membrane's degradability because of the deposition of calcium and phosphate ions during the double diffusion process. Real-time PCR results showed a high expression of osteogenesis-related genes from adipose-derived mesenchymal stem cells (ADMSCs) cultured on the surface of the developed mineralized amniotic membrane (MAM). Further in vivo experiments were conducted using an MAM preseeded with ADMSCs and a critical-size rat calvarial defect model. Histopathological results confirmed that the MAM + cell sample has excellent potential in bone regeneration.
Collapse
Affiliation(s)
- Leila Sabouri
- Cellular and Molecular Research Center, Iran University of Medical Sciences 1449614535, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Farzin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Azadeh Kabiri
- Department of Anatomical Sciences, Guilan University of Medical Science, Rasht 4188794755, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences 1449614535, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mojtaba Farahbakhsh
- Department of Medical Laboratory Sciences, Paramedical Sciences School of Langeroud, Guilan University of Medical Science, Rasht 4188794755, Iran
| | | | - Abdolmohammad Kajbafzadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Ali Samadikuchaksaraei
- Cellular and Molecular Research Center, Iran University of Medical Sciences 1449614535, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Fatemeh Yousefbeyk
- Department of Pharmacology, School of Pharmacy, Guilan University of Medical Sciences, Rasht 4188794755, Iran
| | - Mahmoud Azami
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1417755469, Iran
| | - Mehdi Moghtadaei
- Cellular and Molecular Research Center, Iran University of Medical Sciences 1449614535, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran.,Department of Orthopaedic Surgery, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran 1445613131, Iran.,Bone and Joint Reconstruction Research Center, Iran University of Medical Sciences, Tehran 1157637131, Iran
| |
Collapse
|
45
|
Khalili M, Asadi M, Kahroba H, Soleyman MR, Andre H, Alizadeh E. Corneal endothelium tissue engineering: An evolution of signaling molecules, cells, and scaffolds toward 3D bioprinting and cell sheets. J Cell Physiol 2020; 236:3275-3303. [PMID: 33090510 DOI: 10.1002/jcp.30085] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 08/31/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022]
Abstract
Cornea is an avascular and transparent tissue that focuses light on retina. Cornea is supported by the corneal-endothelial layer through regulation of hydration homeostasis. Restoring vision in patients afflicted with corneal endothelium dysfunction-mediated blindness most often requires corneal transplantation (CT), which faces considerable constrictions due to donor limitations. An emerging alternative to CT is corneal endothelium tissue engineering (CETE), which involves utilizing scaffold-based methods and scaffold-free strategies. The innovative scaffold-free method is cell sheet engineering, which typically generates cell layers surrounded by an intact extracellular matrix, exhibiting tunable release from the stimuli-responsive surface. In some studies, scaffold-based or scaffold-free technologies have been reported to achieve promising outcomes. However, yet some issues exist in translating CETE from bench to clinical practice. In this review, we compare different corneal endothelium regeneration methods and elaborate on the application of multiple cell types (stem cells, corneal endothelial cells, and endothelial precursors), signaling molecules (growth factors, cytokines, chemical compounds, and small RNAs), and natural and synthetic scaffolds for CETE. Furthermore, we discuss the importance of three-dimensional bioprinting strategies and simulation of Descemet's membrane by biomimetic topography. Finally, we dissected the recent advances, applications, and prospects of cell sheet engineering for CETE.
Collapse
Affiliation(s)
- Mostafa Khalili
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Asadi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Houman Kahroba
- Biomedicine Institute, and Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Soleyman
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Helder Andre
- Department of Clinical Neuroscience, St. Erik Eye Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
46
|
Flexor tendon repair with amniotic membrane. INTERNATIONAL ORTHOPAEDICS 2020; 44:2037-2045. [PMID: 32748027 DOI: 10.1007/s00264-020-04752-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 07/23/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Flexor tendon adhesion to tissues is one of the most frequent complications reported after flexor tendon repair. The human amniotic membrane (HAM) was used to wrap the tendon repair site to decrease fibrotic response and tendon adhesion. METHODS A total of 19 patients with flexor tendon injuries were subjected to surgical repair. The repair site was wrapped with human amniotic membrane (HAM) in nine cases. The remaining ten cases served as controls as no HAM wrap was used. The clinical outcome was assessed by pain, range of motion, and pinch strength. The healing of repair was evaluated with high-frequency ultrasound; the biologic response was assessed with two inflammatory mediators, i.e., interleukin-6 and TGF-beta-1. RESULTS HAM wrap cases recorded less pain, higher total active range of motion, and better tendon glide on ultrasonography at follow-up (6-18 months). The levels of serum inflammatory biologic markers decreased in majority of HAM cases whereas they increased in controls at two to six weeks post-operatively. No infection/immune rejection phenomenon was seen in HAM wrap cases. CONCLUSIONS HAM wrap around the tendon repair site resulted in quicker function and qualitatively better tendon healing on ultrasound, with a decrease of the biologic response.
Collapse
|
47
|
Mirzadegan E, Golshahi H, Kazemnejad S. Current evidence on immunological and regenerative effects of menstrual blood stem cells seeded on scaffold consisting of amniotic membrane and silk fibroin in chronic wound. Int Immunopharmacol 2020; 85:106595. [DOI: 10.1016/j.intimp.2020.106595] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
|
48
|
Arrizabalaga JH, Nollert MU. Riboflavin-UVA crosslinking of amniotic membranes and its influence on the culture of adipose-derived stem cells. J Mech Behav Biomed Mater 2020; 106:103729. [PMID: 32250944 DOI: 10.1016/j.jmbbm.2020.103729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/31/2020] [Accepted: 02/26/2020] [Indexed: 02/04/2023]
Abstract
The human amniotic membrane (hAM) is a collagen-based extracellular matrix whose applications are restricted by its moderate mechanical properties and rapid biodegradation. In this work, we investigate the use of riboflavin, a water-soluble vitamin, to crosslink and strengthen the human amniotic membrane under UVA light. The effect of riboflavin-UVA crosslinking on hAM properties were determined via infrared spectroscopy, uniaxial tensile testing, proteolytic degradation, permeability testing, SEM, and quantification of free (un-crosslinked) amine groups. Samples crosslinked with glutaraldehyde, a common and effective yet cytotoxic crosslinking agent, were used as controls. Improved hAM mechanical properties must not come at the expense of reduced cellular proliferation and induction capabilities. In this study, we assessed the viability, proliferation, immunophenotype, and multilineage differentiation ability of human adipose-derived stem cells seeded on riboflavin-UVA crosslinked membranes. Overall, hAM crosslinked with riboflavin-UVA benefited from a stable three-fold increase in mechanical properties (comparable to the increase seen with glutaraldehyde crosslinked membranes) and improved biodegradation, all while retaining their biocompatibility and abilities to support the cultivation and differentiation of adipose-derived stem cells. Together, these results suggest that riboflavin-UVA crosslinking is an effective strategy to enhance the hAM for tissue engineering and regenerative medicine applications establishing it as an attractive and tuneable biomaterial.
Collapse
Affiliation(s)
- Julien H Arrizabalaga
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States
| | - Matthias U Nollert
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK, United States; School of Chemical, Biological & Materials Engineering, University of Oklahoma, Norman, OK, United States.
| |
Collapse
|
49
|
Murphy AR, Truong YB, O'Brien CM, Glattauer V. Bio-inspired human in vitro outer retinal models: Bruch's membrane and its cellular interactions. Acta Biomater 2020; 104:1-16. [PMID: 31945506 DOI: 10.1016/j.actbio.2020.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
Retinal degenerative disorders, such as age-related macular degeneration (AMD), are one of the leading causes of blindness worldwide, however, treatments to completely stop the progression of these debilitating conditions are non-existent. Researchers require sophisticated models that can accurately represent the native structure of human retinal tissue to study these disorders. Current in vitro models used to study the retina are limited in their ability to fully recapitulate the structure and function of the retina, Bruch's membrane and the underlying choroid. Recent developments in the field of induced pluripotent stem cell technology has demonstrated the capability of retinal pigment epithelial cells to recapitulate AMD-like pathology. However, such studies utilise unsophisticated, bio-inert membranes to act as Bruch's membrane and support iPSC-derived retinal cells. This review presents a concise summary of the properties and function of the Bruch's membrane-retinal pigment epithelium complex, the initial pathogenic site of AMD as well as the current status for materials and fabrication approaches used to generate in vitro models of this complex tissue. Finally, this review explores required advances in the field of in vitro retinal modelling. STATEMENT OF SIGNIFICANCE: Retinal degenerative disorders such as age-related macular degeneration are worldwide leading causes of blindness. Previous attempts to model the Bruch's membrane-retinal pigment epithelial complex, the initial pathogenic site of age-related macular degeneration, have lacked the sophistication to elucidate valuable insights into disease mechanisms. Here we provide a detailed account of the morphological, physical and chemical properties of Bruch's membrane which may aid the fabrication of more sophisticated and physiologically accurate in vitro models of the retina, as well as various fabrication techniques to recreate this structure. This review also further highlights some recent advances in some additional challenging aspects of retinal tissue modelling including integrated fluid flow and photoreceptor alignment.
Collapse
Affiliation(s)
- Ashley R Murphy
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yen B Truong
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia
| | - Carmel M O'Brien
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia; Australian Regenerative Medicine Institute, Science, Technology, Research and Innovation Precinct (STRIP), Monash University, Clayton Campus, Wellington Road, Clayton, VIC 3800, Australia
| | | |
Collapse
|
50
|
Vandghanooni S, Eskandani M. Natural polypeptides-based electrically conductive biomaterials for tissue engineering. Int J Biol Macromol 2020; 147:706-733. [PMID: 31923500 DOI: 10.1016/j.ijbiomac.2019.12.249] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/28/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
Abstract
Fabrication of an appropriate scaffold is the key fundamental step required for a successful tissue engineering (TE). The artificial scaffold as extracellular matrix in TE has noticeable role in the fate of cells in terms of their attachment, proliferation, differentiation, orientation and movement. In addition, chemical and electrical stimulations affect various behaviors of cells such as polarity and functionality. Therefore, the fabrication approach and materials used for the preparation of scaffold should be more considered. Various synthetic and natural polymers have been used extensively for the preparation of scaffolds. The electrically conductive polymers (ECPs), moreover, have been used in combination with other polymers to apply electric fields (EF) during TE. In this context, composites of natural polypeptides and ECPs can be taken into account as context for the preparation of suitable scaffolds with superior biological and physicochemical features. In this review, we overviewed the simultaneous usage of natural polypeptides and ECPs for the fabrication of scaffolds in TE.
Collapse
Affiliation(s)
- Somayeh Vandghanooni
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran; Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Eskandani
- Research Center for Pharmaceutical Nanotechnology, Biomedicine institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|