1
|
Resina L, El Hauadi K, Sans J, Esteves T, Ferreira FC, Pérez-Madrigal MM, Alemán C. Electroresponsive and pH-Sensitive Hydrogel as Carrier for Controlled Chloramphenicol Release. Biomacromolecules 2023; 24:1432-1444. [PMID: 36821593 PMCID: PMC10889591 DOI: 10.1021/acs.biomac.2c01442] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Multiresponsive hydrogels, which are smart soft materials that respond to more than one external stimulus, have emerged as powerful tools for biomedical applications, such as drug delivery. Within this context and with the aim of eliminating the systematic administration of antibiotics, special attention is being paid to the development of systems for controlled delivery of antibiotic for topical treatment of bacterial infections. In this work, an electro-chemo responsive hydrogel able to release chloramphenicol (CAM), a broad spectrum antibiotic also used for anticancer therapy, is proposed. This has been prepared by grafting poly(acrylic acid) (PAA) to sodium alginate (Alg) and in situ encapsulation of poly(3,4-ethylenedioxythiophene) nanoparticles loaded with CAM (PEDOT/CAM NPs), which were obtained by emulsion polymerization. Although the response to electrical stimuli of PEDOT was the main control for the release of CAM from PEDOT/CAM NPs, the release by passive diffusion had a relatively important contribution. Conversely, the passive release of antibiotic from the whole engineered hydrogel system, Alg-g-PAA/PEDOT/CAM, was negligible, whereas significant release was achieved under electrostimulation in an acid environment. Bacterial tests and assays with cancer cells demonstrated that the biological activity of CAM remained after release by electrical stimulation. Notably, the successful dual-response of the developed hydrogel to electrical stimuli and pH changes evidence the great prospect of this smart material in the biomedical field, as a tool to fight against bacterial infections and to provide local cancer treatment.
Collapse
Affiliation(s)
- Leonor Resina
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Karima El Hauadi
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Jordi Sans
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Teresa Esteves
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Frederico Castelo Ferreira
- iBB - Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico - Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Maria M Pérez-Madrigal
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center for Multiscale Science and Engineering, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| |
Collapse
|
2
|
Trombino S, Sole R, Di Gioia ML, Procopio D, Curcio F, Cassano R. Green Chemistry Principles for Nano- and Micro-Sized Hydrogel Synthesis. Molecules 2023; 28:molecules28052107. [PMID: 36903352 PMCID: PMC10004334 DOI: 10.3390/molecules28052107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 03/06/2023] Open
Abstract
The growing demand for drug carriers and green-technology-based tissue engineering materials has enabled the fabrication of different types of micro- and nano-assemblies. Hydrogels are a type of material that have been extensively investigated in recent decades. Their physical and chemical properties, such as hydrophilicity, resemblance to living systems, swelling ability and modifiability, make them suitable to be exploited for many pharmaceutical and bioengineering applications. This review deals with a brief account of green-manufactured hydrogels, their characteristics, preparations, importance in the field of green biomedical technology and their future perspectives. Only hydrogels based on biopolymers, and primarily on polysaccharides, are considered. Particular attention is given to the processes of extracting such biopolymers from natural sources and the various emerging problems for their processing, such as solubility. Hydrogels are catalogued according to the main biopolymer on which they are based and, for each type, the chemical reactions and the processes that enable their assembly are identified. The economic and environmental sustainability of these processes are commented on. The possibility of large-scale processing in the production of the investigated hydrogels are framed in the context of an economy aimed at waste reduction and resource recycling.
Collapse
|
3
|
Elyaderani AK, De Lama-Odría MDC, del Valle LJ, Puiggalí J. Multifunctional Scaffolds Based on Emulsion and Coaxial Electrospinning Incorporation of Hydroxyapatite for Bone Tissue Regeneration. Int J Mol Sci 2022; 23:ijms232315016. [PMID: 36499342 PMCID: PMC9738225 DOI: 10.3390/ijms232315016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Tissue engineering is nowadays a powerful tool to restore damaged tissues and recover their normal functionality. Advantages over other current methods are well established, although a continuous evolution is still necessary to improve the final performance and the range of applications. Trends are nowadays focused on the development of multifunctional scaffolds with hierarchical structures and the capability to render a sustained delivery of bioactive molecules under an appropriate stimulus. Nanocomposites incorporating hydroxyapatite nanoparticles (HAp NPs) have a predominant role in bone tissue regeneration due to their high capacity to enhance osteoinduction, osteoconduction, and osteointegration, as well as their encapsulation efficiency and protection capability of bioactive agents. Selection of appropriated polymeric matrices is fundamental and consequently great efforts have been invested to increase the range of properties of available materials through copolymerization, blending, or combining structures constituted by different materials. Scaffolds can be obtained from different processes that differ in characteristics, such as texture or porosity. Probably, electrospinning has the greater relevance, since the obtained nanofiber membranes have a great similarity with the extracellular matrix and, in addition, they can easily incorporate functional and bioactive compounds. Coaxial and emulsion electrospinning processes appear ideal to generate complex systems able to incorporate highly different agents. The present review is mainly focused on the recent works performed with Hap-loaded scaffolds having at least one structural layer composed of core/shell nanofibers.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - María del Carmen De Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d’Enginyeria de Barcelona Est-EEBE, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, 08028 Barcelona, Spain
- Correspondence: (L.J.d.V.); (J.P.)
| |
Collapse
|
4
|
Hydroxyapatite Biobased Materials for Treatment and Diagnosis of Cancer. Int J Mol Sci 2022; 23:ijms231911352. [PMID: 36232652 PMCID: PMC9569977 DOI: 10.3390/ijms231911352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/22/2022] Open
Abstract
Great advances in cancer treatment have been undertaken in the last years as a consequence of the development of new antitumoral drugs able to target cancer cells with decreasing side effects and a better understanding of the behavior of neoplastic cells during invasion and metastasis. Specifically, drug delivery systems (DDS) based on the use of hydroxyapatite nanoparticles (HAp NPs) are gaining attention and merit a comprehensive review focused on their potential applications. These are derived from the intrinsic properties of HAp (e.g., biocompatibility and biodegradability), together with the easy functionalization and easy control of porosity, crystallinity and morphology of HAp NPs. The capacity to tailor the properties of DLS based on HAp NPs has well-recognized advantages for the control of both drug loading and release. Furthermore, the functionalization of NPs allows a targeted uptake in tumoral cells while their rapid elimination by the reticuloendothelial system (RES) can be avoided. Advances in HAp NPs involve not only their use as drug nanocarriers but also their employment as nanosystems for magnetic hyperthermia therapy, gene delivery systems, adjuvants for cancer immunotherapy and nanoparticles for cell imaging.
Collapse
|
5
|
Kadkhodaie-Elyaderani A, de Lama-Odría MDC, Rivas M, Martínez-Rovira I, Yousef I, Puiggalí J, del Valle LJ. Medicated Scaffolds Prepared with Hydroxyapatite/Streptomycin Nanoparticles Encapsulated into Polylactide Microfibers. Int J Mol Sci 2022; 23:ijms23031282. [PMID: 35163204 PMCID: PMC8836174 DOI: 10.3390/ijms23031282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/01/2023] Open
Abstract
The preparation, characterization, and controlled release of hydroxyapatite (HAp) nanoparticles loaded with streptomycin (STR) was studied. These nanoparticles are highly appropriate for the treatment of bacterial infections and are also promising for the treatment of cancer cells. The analyses involved scanning electron microscopy, dynamic light scattering (DLS) and Z-potential measurements, as well as infrared spectroscopy and X-ray diffraction. Both amorphous (ACP) and crystalline (cHAp) hydroxyapatite nanoparticles were considered since they differ in their release behavior (faster and slower for amorphous and crystalline particles, respectively). The encapsulated nanoparticles were finally incorporated into biodegradable and biocompatible polylactide (PLA) scaffolds. The STR load was carried out following different pathways during the synthesis/precipitation of the nanoparticles (i.e., nucleation steps) and also by simple adsorption once the nanoparticles were formed. The loaded nanoparticles were biocompatible according to the study of the cytotoxicity of extracts using different cell lines. FTIR microspectroscopy was also employed to evaluate the cytotoxic effect on cancer cell lines of nanoparticles internalized by endocytosis. The results were promising when amorphous nanoparticles were employed. The nanoparticles loaded with STR increased their size and changed their superficial negative charge to positive. The nanoparticles’ crystallinity decreased, with the consequence that their crystal sizes reduced, when STR was incorporated into their structure. STR maintained its antibacterial activity, although it was reduced during the adsorption into the nanoparticles formed. The STR release was faster from the amorphous ACP nanoparticles and slower from the crystalline cHAp nanoparticles. However, in both cases, the STR release was slower when incorporated in calcium and phosphate during the synthesis. The biocompatibility of these nanoparticles was assayed by two approximations. When extracts from the nanoparticles were evaluated in cultures of cell lines, no cytotoxic damage was observed at concentrations of less than 10 mg/mL. This demonstrated their biocompatibility. Another experiment using FTIR microspectroscopy evaluated the cytotoxic effect of nanoparticles internalized by endocytosis in cancer cells. The results demonstrated slight damage to the biomacromolecules when the cells were treated with ACP nanoparticles. Both ACP and cHAp nanoparticles were efficiently encapsulated in PLA electrospun matrices, providing functionality and bioactive properties.
Collapse
Affiliation(s)
- Amirmajid Kadkhodaie-Elyaderani
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
| | - Maria del Carmen de Lama-Odría
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
| | - Manuel Rivas
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
| | - Immaculada Martínez-Rovira
- MIRAS Beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, E-08290 Cerdanyola del Vallès, Barcelona, Spain; (I.M.-R.); (I.Y.)
- Ionizing Radiation Research Group, Physics Department, Universitat Autònoma de Barcelona (UAB), E-08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Ibraheem Yousef
- MIRAS Beamline BL01, ALBA-CELLS Synchrotron, Carrer de la Llum 2-26, E-08290 Cerdanyola del Vallès, Barcelona, Spain; (I.M.-R.); (I.Y.)
| | - Jordi Puiggalí
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer Baldiri i Reixac 11-15, E-08028 Barcelona, Spain
- Correspondence: (J.P.); (L.J.d.V.)
| | - Luis J. del Valle
- Departament d’Enginyeria Química, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain; (A.K.-E.); (M.d.C.d.L.-O.); (M.R.)
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Spain
- Correspondence: (J.P.); (L.J.d.V.)
| |
Collapse
|
6
|
Rial R, Hassan N, Liu Z, Ruso JM. The design and green nanofabrication of noble hydrogel systems with encapsulation of doped bioactive hydroxyapatite toward sustained drug delivery. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
7
|
Rivas M, Turon P, Alemán C, Puiggalí J, del Valle LJ. Incorporation of Functionalized Calcium Phosphate Nanoparticles in Living Cells. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02182-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractIntracellular calcium (Ca2+) is a key signaling element that is involved in a great variety of fundamental biological processes. Thus, Ca2+ deregulation would be involved in the cancer cell progression and damage of mitochondrial membrane and DNA, which lead to apoptosis and necrosis. In this study, we have prepared amorphous calcium phosphate nanoparticles (ACP NPs) for studied their incorporation by endocytosis or electroporation to epithelial, endothelial and fibroblast cells (MCF-7, HUVEC and COS-1 cells, respectively). Our results showed that internalized ACP NPs have cytotoxic effects as a consequence of the increase of the intracellular calcium content. The endocytosis pathways showed a greater cytotoxic effect since calcium ions could easily be released from the nanoparticles and be accumulated in the lysosomes and mitochondria. In addition, the cytotoxic effect could be reversed when calcium ion was chelated with ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA). Modification of ACP NPs by coating with different compounds based on phosphates was also evaluated. The results indicated a reduction of the cytotoxic effect, in the order polyphosphate < phosphonic acid < orthophosphate. A differential cytotoxic effect of ACP-NPs was observed in function of the cell type; the cytotoxic effect can be ordered as i.e., HUVEC > COS-1 > MCF-7. The greater cytotoxic effect caused by the increase of intracellular calcium that is observed in normal cells and the greater resistance of cancer cells suggests new perspectives for cancer research.
Collapse
|
8
|
Sans J, Sanz V, Turon P, Alemán C. Enhanced CO
2
Conversion into Ethanol by Permanently Polarized Hydroxyapatite through C−C Coupling. ChemCatChem 2021. [DOI: 10.1002/cctc.202101157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Jordi Sans
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering Universitat Politècnica de Catalunya Av. Eduard Maristany 10-Barcelona, 14 08019 Barcelona Spain
| | - Vanesa Sanz
- B. Braun Surgical, S.A.U Carretera de Terrassa 121 08191 Rubí-Barcelona Spain
| | - Pau Turon
- B. Braun Surgical, S.A.U Carretera de Terrassa 121 08191 Rubí-Barcelona Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química and Barcelona Research Center in Multiscale Science and Engineering Universitat Politècnica de Catalunya Av. Eduard Maristany 10-Barcelona, 14 08019 Barcelona Spain
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 10–12 08028 Barcelona Spain
| |
Collapse
|
9
|
Valenti S, Del Valle L, Yousefzade O, Macovez R, Franco L, Puiggalí J. Chloramphenicol loaded polylactide melt electrospun scaffolds for biomedical applications. Int J Pharm 2021; 606:120897. [PMID: 34293473 DOI: 10.1016/j.ijpharm.2021.120897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/11/2022]
Abstract
Melt electrospinning of polylactide (PLA) loaded with chloramphenicol (CAM) has been performed and characteristics of fibers, physical properties of scaffolds, CAM release behavior, antibacterial properties and biocompatibility have been evaluated. The interest of CAM loaded samples is nowadays enhanced for biomedical applications since this antibiotic has been demonstrated to be efficient for the treatment of cancer. Melt electrospinning has been selected as an ideal preparation process because it avoids the use of toxic solvents which are harmful to the environment and could be problematic for biomedical applications. The electrospinning process rendered fibers with a relatively large diameter (between 20 μm and 40 μm depending on the load) and minimum polymer degradation. Characteristics of melt electrospun scaffolds were also compared with those prepared by solution electrospinning. Differences consisted in a more sustained release and a higher biocompatibility for the melt processed samples. Bactericide effect was evaluated as an evidence of the maintenance of the CAM bioactivity after melt processing at high temperature and the slower release caused by the relatively high diameter of the constitutive fibers. Since pure CAM showed thermal degradation at temperatures relatively close to the PLA melting temperature, a complete analysis of the degradation process of pure CAM as well as of PLA samples loaded with CAM was performed. The Invariant Kinetic Parameters method allowed determining an initial decomposition step that followed an autoaccelatory Avrami model, and then an autocatalytic decomposition reaction took place for conversions higher than 50%. Dispersion in the PLA matrix enhances the thermal stability of the antibiotic, with an onset temperature of degradation that was higher by 16 °C in the melt-electrospun fibers than in the liquid state of pure CAM.
Collapse
Affiliation(s)
- Sofia Valenti
- Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Escola Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona 08019, Spain
| | - Luis Del Valle
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Escola Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona 08019, Spain
| | - Omid Yousefzade
- Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Escola Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona 08019, Spain
| | - Roberto Macovez
- Grup de Caracterització de Materials, Departament de Física, Universitat Politècnica de Catalunya, EEBE, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain
| | - Lourdes Franco
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Escola Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona 08019, Spain.
| | - Jordi Puiggalí
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, E-08019 Barcelona, Catalonia, Spain; Departament d'Enginyeria Química, Universitat Politècnica de Catalunya, Escola Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, Barcelona 08019, Spain.
| |
Collapse
|
10
|
Enshaei H, Puiggalí‐Jou A, del Valle LJ, Turon P, Saperas N, Alemán C. Nanotheranostic Interface Based on Antibiotic-Loaded Conducting Polymer Nanoparticles for Real-Time Monitoring of Bacterial Growth Inhibition. Adv Healthc Mater 2021; 10:e2001636. [PMID: 33336558 DOI: 10.1002/adhm.202001636] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/29/2020] [Indexed: 01/18/2023]
Abstract
Conducting polymers have been increasingly used as biologically interfacing electrodes for biomedical applications due to their excellent and fast electrochemical response, reversible doping-dedoping characteristics, high stability, easy processability, and biocompatibility. These advantageous properties can be used for the rapid detection and eradication of infections associated to bacterial growth since these are a tremendous burden for individual patients as well as the global healthcare system. Herein, a smart nanotheranostic electroresponsive platform, which consists of chloramphenicol (CAM)-loaded in poly(3,4-ethylendioxythiophene) nanoparticles (PEDOT/CAM NPs) for concurrent release of the antibiotic and real-time monitoring of bacterial growth is presented. PEDOT/CAM NPs, with an antibiotic loading content of 11.9 ± 1.3% w/w, are proved to inhibit the growth of Escherichia coli and Streptococcus sanguinis due to the antibiotic release by cyclic voltammetry. Furthermore, in situ monitoring of bacterial activity is achieved through the electrochemical detection of β-nicotinamide adenine dinucleotide, a redox active specie produced by the microbial metabolism that diffuse to the extracellular medium. According to these results, the proposed nanotheranostic platform has great potential for real-time monitoring of the response of bacteria to the released antibiotic, contributing to the evolution of the personalized medicine.
Collapse
Affiliation(s)
- Hamidreza Enshaei
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
| | - Anna Puiggalí‐Jou
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
| | - Luis J. del Valle
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
| | - Pau Turon
- B. Braun Surgical S.A. Carretera de Terrassa 121, Rubí Barcelona 08191 Spain
| | - Núria Saperas
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. I2 Barcelona 08019 Spain
- Barcelona Research Center for Multiscale Science and Engineering EEBE Universitat Politècnica de Catalunya C/ Eduard Maristany 10‐14, Ed. C Barcelona 08019 Spain
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute of Science and Technology Baldiri Reixac 10‐12 Barcelona 08028 Spain
| |
Collapse
|
11
|
del Valle LJ, Puiggalí J. Hydroxyapatite Based Polymer Composites for Regenerative Medicine Applications. ENCYCLOPEDIA OF MATERIALS: COMPOSITES 2021:785-803. [DOI: 10.1016/b978-0-12-819724-0.00054-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Palierse E, Hélary C, Krafft JM, Génois I, Masse S, Laurent G, Alvarez Echazu MI, Selmane M, Casale S, Valentin L, Miche A, Chan BC, Lau CB, Ip M, Desimone MF, Coradin T, Jolivalt C. Baicalein-modified hydroxyapatite nanoparticles and coatings with antibacterial and antioxidant properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111537. [DOI: 10.1016/j.msec.2020.111537] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/31/2020] [Accepted: 09/17/2020] [Indexed: 12/11/2022]
|
13
|
Iriarte-Mesa C, López YC, Matos-Peralta Y, de la Vega-Hernández K, Antuch M. Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications. Top Curr Chem (Cham) 2020; 378:12. [PMID: 31907672 DOI: 10.1007/s41061-019-0275-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/13/2019] [Indexed: 12/22/2022]
Abstract
Nanomaterials have revolutionized the sensing and biosensing fields, with the development of more sensitive and selective devices for multiple applications. Gold, silver and iron oxide nanoparticles have played a particularly major role in this development. In this review, we provide a general overview of the synthesis and characteristics of gold, silver and iron oxide nanoparticles, along with the main strategies for their surface functionalization with ligands and biomolecules. Finally, different architectures suitable for electrochemical applications are reviewed, as well as their main fabrication procedures. We conclude with some considerations from the authors' perspective regarding the promising use of these materials and the challenges to be faced in the near future.
Collapse
Affiliation(s)
- Claudia Iriarte-Mesa
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | - Yeisy C López
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba.,Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Calzada Legaria 694, Col. Irrigación, 11 500, Ciudad de México, Mexico
| | - Yasser Matos-Peralta
- Laboratorio de Química Bioinorgánica, Departamento de Química General e Inorgánica, Facultad de Química, Universidad de La Habana, Zapata y G, Vedado, Plaza de la Revolución, 10 400, La Habana, Cuba
| | | | - Manuel Antuch
- Unité de Chimie et Procédés, École Nationale Supérieure de Techniques Avancées (ENSTA), Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France.
| |
Collapse
|
14
|
Sans J, Llorca J, Sanz V, Puiggalí J, Turon P, Alemán C. Electrically Polarized Hydroxyapatite: Influence of the Polarization Process on the Microstructure and Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14782-14790. [PMID: 31647245 DOI: 10.1021/acs.langmuir.9b02522] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semipermanently polarized hydroxyapatite, named SP/HAp(w), is obtained by applying a constant dc electric field of 1-10 kV/cm at 300-850 °C to the samples previously sintered in water vapor, while permanently polarized hydroxyapatite, PP/HAp(a), is produced by applying a dc electric field of 3 kV/cm at 1000 °C to the samples sintered in air. SP/HAp(w) has been used for biomedical applications, while PP/HAp(a) has been proved to be a valuable catalyst for N2 and CO2 fixation. In this work, structural differences between SP/HAp(w) and PP/HAp(a) have been ascertained using Raman microscopy, wide-angle X-ray diffraction, scanning electronic microscopy, high-resolution transmission electron microscopy, and grazing incidence X-ray diffraction. Results prove the existence of crystal distortion in the form of amorphous calcium phosphate and β-tricalcium phosphate (β-TCP) phases close to the surface because of the atmosphere used in the sintering process. The existence of an amorphous layer in the surface and the phase transition through β-TCP of SP/HAp(w) are the structural factors responsible for the differences with respect to PP/HAp(a). Moreover, a superstructure has been identified in PP/HAp(a) samples, which could be another structural factor associated with enhanced conductivity, permanent polarization, and catalytic activity of this material.
Collapse
Affiliation(s)
- Jordi Sans
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. I2 , 08019 Barcelona , Barcelona , Spain
- Barcelona Research Center in Multiscale Science and Engineering , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14 , 08019 Barcelona , Barcelona , Spain
| | - Jordi Llorca
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. I2 , 08019 Barcelona , Barcelona , Spain
- Barcelona Research Center in Multiscale Science and Engineering , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14 , 08019 Barcelona , Barcelona , Spain
- Institut de Tècniques Energètiques, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. C3 , 08019 Barcelona , Barcelona , Spain
| | - Vanesa Sanz
- B. Braun Surgical, S.A. , Carretera de Terrasa 121 , 08191 Rubí Barcelona , Spain
| | - Jordi Puiggalí
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. I2 , 08019 Barcelona , Barcelona , Spain
- Barcelona Research Center in Multiscale Science and Engineering , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14 , 08019 Barcelona , Barcelona , Spain
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Barcelona , Spain
| | - Pau Turon
- B. Braun Surgical, S.A. , Carretera de Terrasa 121 , 08191 Rubí Barcelona , Spain
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14, Ed. I2 , 08019 Barcelona , Barcelona , Spain
- Barcelona Research Center in Multiscale Science and Engineering , Universitat Politècnica de Catalunya , C/Eduard Maristany, 10-14 , 08019 Barcelona , Barcelona , Spain
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology , Baldiri Reixac 10-12 , 08028 Barcelona , Barcelona , Spain
| |
Collapse
|
15
|
Valenti S, Diaz A, Romanini M, del Valle LJ, Puiggalí J, Tamarit JL, Macovez R. Amorphous binary dispersions of chloramphenicol in enantiomeric pure and racemic poly-lactic acid: Morphology, molecular relaxations, and controlled drug release. Int J Pharm 2019; 568:118565. [DOI: 10.1016/j.ijpharm.2019.118565] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/28/2022]
|
16
|
Rivas M, Del Valle LJ, Alemán C, Puiggalí J. Peptide Self-Assembly into Hydrogels for Biomedical Applications Related to Hydroxyapatite. Gels 2019; 5:E14. [PMID: 30845674 PMCID: PMC6473879 DOI: 10.3390/gels5010014] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/19/2019] [Accepted: 02/25/2019] [Indexed: 01/02/2023] Open
Abstract
Amphiphilic peptides can be self-assembled by establishing physical cross-links involving hydrogen bonds and electrostatic interactions with divalent ions. The derived hydrogels have promising properties due to their biocompatibility, reversibility, trigger capability, and tunability. Peptide hydrogels can mimic the extracellular matrix and favor the growth of hydroxyapatite (HAp) as well as its encapsulation. Newly designed materials offer great perspectives for applications in the regeneration of hard tissues such as bones, teeth, and cartilage. Furthermore, development of drug delivery systems based on HAp and peptide self-assembly is attracting attention.
Collapse
Affiliation(s)
- Manuel Rivas
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Luís J Del Valle
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Carlos Alemán
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| | - Jordi Puiggalí
- Chemical Engineering Department, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Escola d'Enginyeria de Barcelona Est-EEBE, c/Eduard Maristany 10-14, 08019 Barcelona, Spain.
| |
Collapse
|
17
|
Benedini L, Placente D, Ruso J, Messina P. Adsorption/desorption study of antibiotic and anti-inflammatory drugs onto bioactive hydroxyapatite nano-rods. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:180-190. [PMID: 30889690 DOI: 10.1016/j.msec.2019.01.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/05/2019] [Accepted: 01/22/2019] [Indexed: 01/19/2023]
Abstract
The use of high doses of antibacterial and anti-inflammatory drugs for patients with bone diseases, associated to implants or bone filling, can develop adverse effects; and consequently, it promotes to think new strategies to avoid this problem. In this work, it has been described the adsorption/release (or desorption) behavior of two drugs, ciprofloxacin (CIP) and ibuprofen (IBU), onto hydroxyapatite (nano-HA) at 37 °C. Through Ultraviolet-Visible (UV-Vis) spectroscopy, the concentrations of both drugs in adsorption, kinetic and desorption processes were obtained. The Fourier Transformed-Infrared (FT-IR) spectroscopy, Zeta-potential (ζ-potential), High-Resolution Transmission Electron Microscopy (H-TEM) and x-Ray Diffraction (xRD) were also used to characterize bared nanoparticles and those with adsorbed drugs. Five adsorption models (Langmuir, Freundlich, Sips, Temkin and Dubinin-Radushkevich) were used for describing the behavior of both active compounds. The adsorption processes (CIP/nano-HA and IBU/nano-HA) were better predicted by the Sips model than by the others. The kinetic adsorption data were processed, for both active agents, by application of Avrami's model. Desorption/release process (of both drugs) was evaluated though Korsmeyer-Peppas (K-P) model. Owing to the predictability of these systems, we propose the use of these active ceramics as potential bone filler for improving the treatment against bacterial bone infections and to avoid its associated inflammatory process.
Collapse
Affiliation(s)
- Luciano Benedini
- Department of Chemistry, Universidad Nacional del Sur, B8000CPB Bahía Blanca, INQUISUR-CONICET, Argentina.
| | - Damián Placente
- Department of Chemistry, Universidad Nacional del Sur, B8000CPB Bahía Blanca, INQUISUR-CONICET, Argentina
| | - Juan Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782, Spain
| | - Paula Messina
- Department of Chemistry, Universidad Nacional del Sur, B8000CPB Bahía Blanca, INQUISUR-CONICET, Argentina
| |
Collapse
|