1
|
Mokeem LS, Martini Garcia I, Balhaddad AA, Lan Y, Seifu D, Weir MD, Melo MA. Multifunctional Dental Adhesives Formulated with Silane-Coated Magnetic Fe 3O 4@m-SiO 2 Core-Shell Particles to Counteract Adhesive Interfacial Breakdown. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2120-2139. [PMID: 38170561 DOI: 10.1021/acsami.3c15157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The process of bonding to dentin is complex and dynamic, greatly impacting the longevity of dental restorations. The tooth/dental material interface is degraded by bacterial acids, matrix metalloproteinases (MMPs), and hydrolysis. As a result, bonded dental restorations face reduced longevity due to adhesive interfacial breakdown, leading to leakage, tooth pain, recurrent caries, and costly restoration replacements. To address this issue, we synthesized and characterized a multifunctional magnetic platform, CHX@SiQuac@Fe3O4@m-SiO2, to provide several beneficial functions. The platform comprises Fe3O4 microparticles and chlorhexidine (CHX) encapsulated within mesoporous silica, which was silanized by an antibacterial quaternary ammonium silane (SiQuac). This platform simultaneously targets bacterial inhibition, stability of the hybrid layer, and enhanced filler infiltration by magnetic motion. Comprehensive experiments include X-ray diffraction, FT-IR, VSM, EDS, N2 adsorption-desorption (BET), transmission electron microscopy, scanning electron microscopy, thermogravimetric analysis, and UV-vis spectroscopy. Then, CHX@SiQuac@Fe3O4@m-SiO2 was incorporated into an experimental adhesive resin for dental bonding restorations, followed by immediate and long-term antibacterial assessment, cytotoxicity evaluation, and mechanical and bonding performance. The results confirmed the multifunctional nature of CHX@SiQuac@Fe3O4@m-SiO2. This work outlined a roadmap for (1) designing and tuning an adhesive formulation containing the new platform CHX@SiQuac@Fe3O4@m-SiO2; (2) assessing microtensile bond strength to dentin using a clinically relevant model of simulated hydrostatic pulpal pressure; and (3) investigating the antibacterial outcome performance of the particles when embedded into the formulated adhesives over time. The results showed that at 4 wt % of CHX@SiQuac@Fe3O4@m-SiO2-doped adhesive under the guided magnetic field, the bond strength increased by 28%. CHX@SiQuac@Fe3O4@m-SiO2 enhanced dentin adhesion in the magnetic guide bonding process without altering adhesive properties or causing cytotoxicity. This finding presents a promising method for strengthening the tooth/dental material interface's stability and extending the bonded restorations' lifespan.
Collapse
Affiliation(s)
- Lamia Sami Mokeem
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Isadora Martini Garcia
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Abdulrahman A Balhaddad
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Yucheng Lan
- Department of Physics and Engineering Physics, Morgan State University, Baltimore, Maryland 21251, United States
| | - Dereje Seifu
- Department of Physics and Engineering Physics, Morgan State University, Baltimore, Maryland 21251, United States
| | - Michael D Weir
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Biomaterials and Tissue Engineering, Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| | - Mary Anne Melo
- Ph.D. Program in Biomedical Sciences, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
- Division of Cariology and Operative Dentistry, Department of Comprehensive Dentistry, University of Maryland School of Dentistry, Baltimore, Maryland 21201, United States
| |
Collapse
|
2
|
An S, Evans JL, Hamlet S, Love RM. Overview of incorporation of inorganic antimicrobial materials in denture base resin: A scoping review. J Prosthet Dent 2023; 130:202-211. [PMID: 34756425 DOI: 10.1016/j.prosdent.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/18/2022]
Abstract
STATEMENT OF PROBLEM Dental hygiene for institutionalized patients and recurring Candida-associated denture stomatitis remain problematic because of a patient's limited dexterity or inability to eliminate Candida from denture surfaces. Although there has been extensive research into antimicrobial modification of denture base resins with inorganic materials, scoping reviews of the literature to identify knowledge gaps or efficacy of inorganic antimicrobial materials in denture base resins are lacking. PURPOSE The purpose of this scoping review was to provide a synopsis of the efficacy of the major classes of inorganic antimicrobial materials currently incorporated into denture base resins. MATERIAL AND METHODS The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews was applied. Four electronic databases, including Embase, PubMed, Web of Science, and Google Scholar, were accessed for articles in the English language, up to February 2019, without restrictions on the date of publication. RESULTS From the 53 articles selected, 25 distinguishable inorganic materials were found and divided into 3 subgroups. Forty-three articles evaluated nanomaterials, where mostly silver ion nanoparticles and/or titanium dioxide nanoparticles were incorporated into denture base resins. Fourteen articles examined antimicrobial drugs and medications, including azole group medications, amphotericin-B, Bactekiller, chlorhexidine, Novaron, and Zeomic. Two articles classified as others explored hydroxyapatite- and fiber-incorporated denture base resins. CONCLUSIONS Although nanotechnology and antimicrobial medications or drugs have been successfully used to reduce Candida-associated denture stomatitis, long-term solutions are still lacking, and their disadvantages continue to outweigh their advantages.
Collapse
Affiliation(s)
- Steve An
- Lecturer, School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia.
| | - Jane L Evans
- Associate Professor, School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Stephen Hamlet
- Senior Lecturer, School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Robert M Love
- Professor, School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
3
|
Heng X, Pan Y, Chen X, Pu L, Lu J, Li K, Tang K. Long-Term and Stable Dental Therapies via an In Situ Spontaneous Medicine Delivery System. ACS OMEGA 2023; 8:23936-23944. [PMID: 37426210 PMCID: PMC10324093 DOI: 10.1021/acsomega.3c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/02/2023] [Indexed: 07/11/2023]
Abstract
Chronic oral diseases are boring, long-term, and discomfort intense diseases, which endanger the physical and mental health of patients constantly. Traditional therapeutic methods based on medicines (including swallowing drugs, applying ointment, or injection in situ) bring much inconvenience and discomfort. A new method possessing accurate, long-term, stable, convenient, and comfortable features is in great need. In this study, we demonstrated a development of one spontaneous administration for the prevention and therapy on a series of oral diseases. By uniting dental resin and medicine-loaded mesoporous molecular sieve, nanoporous medical composite resin (NMCR) was synthesized by a simple physical mixing and light curing method. Physicochemical investigations of XRD, SEM, TEM, UV-vis, N2 adsorption, and biochemical experiments of antibacterial and pharmacodynamic evaluation on periodontitis treatment of SD rats were carried on to characterize an NMCR spontaneous medicine delivery system. Compared to existing pharmacotherapy and in situ treatments, NMCR can keep a quite long time of stable in situ medicine release during the whole therapeutic period. Taking the periodontitis treatment as an instance, the probing pocket depth value in a half-treatment time of 0.69 from NMCR@MINO was much lower than that of 1.34 from the present commercial Periocline ointment, showing an over two times effect.
Collapse
Affiliation(s)
- Xuan Heng
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yuhao Pan
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Xinghui Chen
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Liuyi Pu
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
| | - Jiaping Lu
- Dental
Clinic of Xuhui District, Shanghai 200031, People’s
Republic of China
| | - Ka Li
- Institute
of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai 200032, People’s
Republic of China
| | - Kangjian Tang
- Innovation
Center for Chemical Sciences, College of Chemistry, Chemical Engineering
and Materials Science, Soochow University, Suzhou 215123, People’s Republic of China
- Jiangsu
Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, People’s Republic of China
| |
Collapse
|
4
|
Aminoroaya A, Esmaeely Neisiany R, Nouri Khorasani S, Panahi P, Das O, Ramakrishna S. A Review of Dental Composites: Methods of Characterizations. ACS Biomater Sci Eng 2020; 6:3713-3744. [DOI: 10.1021/acsbiomaterials.0c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alireza Aminoroaya
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Rasoul Esmaeely Neisiany
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Saied Nouri Khorasani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Parisa Panahi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Oisik Das
- Material Science Division, Department of Engineering Sciences and Mathematics, Luleå University of Technology, Luleå 97187, Sweden
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|