1
|
Kaymaz SV, Nobar HM, Sarıgül H, Soylukan C, Akyüz L, Yüce M. Nanomaterial surface modification toolkit: Principles, components, recipes, and applications. Adv Colloid Interface Sci 2023; 322:103035. [PMID: 37931382 DOI: 10.1016/j.cis.2023.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Surface-functionalized nanostructures are at the forefront of biotechnology, providing new opportunities for biosensors, drug delivery, therapy, and bioimaging applications. The modification of nanostructures significantly impacts the performance and success of various applications by enabling selective and precise targeting. This review elucidates widely practiced surface modification strategies, including click chemistry, cross-coupling, silanization, aldehyde linkers, active ester chemistry, maleimide chemistry, epoxy linkers, and other protein and DNA-based methodologies. We also delve into the application-focused landscape of the nano-bio interface, emphasizing four key domains: therapeutics, biosensing, environmental monitoring, and point-of-care technologies, by highlighting prominent studies. The insights presented herein pave the way for further innovations at the intersection of nanotechnology and biotechnology, providing a useful handbook for beginners and professionals. The review draws on various sources, including the latest research articles (2018-2023), to provide a comprehensive overview of the field.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | | | - Hasan Sarıgül
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Caner Soylukan
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey
| | - Lalehan Akyüz
- Department of Molecular Biology and Genetics, Aksaray University, 68100 Aksaray, Turkey
| | - Meral Yüce
- SUNUM Nanotechnology Research and Application Centre, Sabanci University, Istanbul 34956, Turkey.
| |
Collapse
|
2
|
Veselov M, Uporov IV, Efremova MV, Le-Deygen IM, Prusov AN, Shchetinin IV, Savchenko AG, Golovin YI, Kabanov AV, Klyachko NL. Modulation of α-Chymotrypsin Conjugated to Magnetic Nanoparticles by the Non-Heating Low-Frequency Magnetic Field: Molecular Dynamics, Reaction Kinetics, and Spectroscopy Analysis. ACS OMEGA 2022; 7:20644-20655. [PMID: 35755395 PMCID: PMC9219078 DOI: 10.1021/acsomega.2c00704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Enzymes conjugated to magnetic nanoparticles (MNPs) undergo changes in the catalytic activity of the non-heating low-frequency magnetic field (LFMF). We apply in silico simulations by molecular dynamics (MD) and in vitro spectroscopic analysis of the enzyme kinetics and secondary structure to study α-chymotrypsin (CT) conjugated to gold-coated iron oxide MNPs. The latter are functionalized by either carboxylic or amino group moieties to vary the points of enzyme attachment. The MD simulation suggests that application of the stretching force to the CT globule by its amino or carboxylic groups causes shrinkage of the substrate-binding site but little if any changes in the catalytic triad. Consistent with this, in CT conjugated to MNPs by either amino or carboxylic groups, LFMF alters the Michaelis-Menten constant but not the apparent catalytic constant k cat (= V max/[E]o). Irrespective of the point of conjugation to MNPs, the CT secondary structure was affected with nearly complete loss of α-helices and increase in the random structures in LFMF, as shown by attenuated total reflection Fourier transformed infrared spectroscopy. Both the catalytic activity and the protein structure of MNP-CT conjugates restored 3 h after the field exposure. We believe that such remotely actuated systems can find applications in advanced manufacturing, nanomedicine, and other areas.
Collapse
Affiliation(s)
- Maxim
M. Veselov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Igor V. Uporov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Maria V. Efremova
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- National
University of Science and Technology “MISIS”, Moscow 119049, Russia
- Department
of Applied Physics, Eindhoven University
of Technology, Eindhoven 5600 MB, The Netherlands
| | - Irina M. Le-Deygen
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | | | - Igor V. Shchetinin
- National
University of Science and Technology “MISIS”, Moscow 119049, Russia
| | | | - Yuri I. Golovin
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- G.R.
Derzhavin Tambov State University, Tambov 392000, Russia
| | - Alexander V. Kabanov
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center
for
Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7362, United States
| | - Natalia L. Klyachko
- School
of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Center
for
Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7362, United States
| |
Collapse
|
3
|
Ivanovski V, Shapovalova OE, Drozdov AS. Structural Rearrangements of Carbonic Anhydrase Entrapped in Sol-Gel Magnetite Determined by ATR–FTIR Spectroscopy. Int J Mol Sci 2022; 23:ijms23115975. [PMID: 35682654 PMCID: PMC9181146 DOI: 10.3390/ijms23115975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023] Open
Abstract
Enzymatically active nanocomposites are a perspective class of bioactive materials that finds their application in numerous fields of science and technology ranging from biosensors and therapeutic agents to industrial catalysts. Key properties of such systems are their stability and activity under various conditions, the problems that are addressed in any research devoted to this class of materials. Understanding the principles that govern these properties is critical to the development of the field, especially when it comes to a new class of bioactive systems. Recently, a new class of enzymatically doped magnetite-based sol-gel systems emerged and paved the way for a variety of potent bioactive magnetic materials with improved thermal stability. Such systems already showed themself as perspective industrial and therapeutic agents, but are still under intense investigation and many aspects are still unclear. Here we made a first attempt to describe the interaction of biomolecules with magnetite-based sol-gel materials and to investigate facets of protein structure rearrangements occurring within the pores of magnetite sol-gel matrix using ATR Fourier-transform infrared spectroscopy.
Collapse
Affiliation(s)
- Vladimir Ivanovski
- Faculty of Natural Sciences and Mathematics, Institute of Chemistry, Ss. Cyril and Methodius University in Skopje, Arhimedova 5, 1000 Skopje, North Macedonia
- Correspondence: (V.I.); (A.S.D.)
| | - Olga E. Shapovalova
- SCAMT Institute, ITMO University, Lomonosova St. 9, 191002 Saint Petersburg, Russia;
| | - Andrey S. Drozdov
- Moscow Institute of Physics and Technology, Institutsky Ave. 9, 141701 Dolgoprudny, Moscow Region, Russia
- Correspondence: (V.I.); (A.S.D.)
| |
Collapse
|
4
|
Ivanov YD, Malsagova KA, Bukharina NS, Vesnin SG, Usanov SA, Tatur VY, Lukyanitsa AA, Ivanova ND, Konev VA, Ziborov VS. Radiothermometric Study of the Effect of Amino Acid Mutation on the Characteristics of the Enzymatic System. Diagnostics (Basel) 2022; 12:diagnostics12040943. [PMID: 35453991 PMCID: PMC9024681 DOI: 10.3390/diagnostics12040943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/16/2022] Open
Abstract
The radiothermometry (RTM) study of a cytochrome-containing system (CYP102 A1) has been conducted in order to demonstrate the applicability of RTM for monitoring changes in the functional activity of an enzyme in case of its point mutation. The study has been performed with the example of the wild-type cytochrome (WT) and its mutant type A264K. CYP102 A1 is a nanoscale protein-enzymatic system of about 10 nm in size. RTM uses a radio detector and can record the corresponding brightness temperature (Tbr) of the nanoscale enzyme solution within the 3.4–4.2 GHz frequency range during enzyme functioning. It was found that the enzymatic reaction during the lauric acid hydroxylation at the wild-type CYP102 A1 (WT) concentration of ~10−9 M is accompanied by Tbr fluctuations of ~0.5–1 °C. At the same time, no Tbr fluctuations are observed for the mutated forms of the enzyme CYP102 A1 (A264K), where one amino acid was replaced. We know that the activity of CYP102 A1 (WT) is ~4 orders of magnitude higher than that of CYP102 A1 (A264K). We therefore concluded that the disappearance of the fluctuation of Tbr CYP102 A1 (A264K) is associated with a decrease in the activity of the enzyme. This effect can be used to develop new methods for testing the activity of the enzyme that do not require additional labels and expensive equipment, in comparison with calorimetry and spectral methods. The RTM is beginning to find application in the diagnosis of oncological diseases and for the analysis of biochemical processes.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10 Build. 8, 119121 Moscow, Russia; (N.S.B.); (V.S.Z.)
- Laboratory of Shock Wave Impacts, Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya St. 13 Build. 2, 125412 Moscow, Russia
- Correspondence: (Y.D.I.); (K.A.M.); Tel.: +7-(499)-246-37-61 (Y.D.I.)
| | - Kristina A. Malsagova
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10 Build. 8, 119121 Moscow, Russia; (N.S.B.); (V.S.Z.)
- Correspondence: (Y.D.I.); (K.A.M.); Tel.: +7-(499)-246-37-61 (Y.D.I.)
| | - Natalia S. Bukharina
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10 Build. 8, 119121 Moscow, Russia; (N.S.B.); (V.S.Z.)
| | | | - Sergey A. Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, Academician V.F. Kuprevich 5 Build. 2, 220141 Minsk, Belarus;
| | - Vadim Yu. Tatur
- Foundation of Perspective Technologies and Novations, Shipilovskaya St. 64, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.)
| | - Andrei A. Lukyanitsa
- Foundation of Perspective Technologies and Novations, Shipilovskaya St. 64, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.)
| | - Nina D. Ivanova
- Skryabin Moscow State Academy of Veterinary Medicine and Biotechnology, Academician Skryabin St. 23, 109472 Moscow, Russia;
| | - Vladimir A. Konev
- Department of Infectious Diseases in Children, Faculty of Pediatrics, Pirogov Russian National Research Medical University, Ostrovityanov St. 1, 117997 Moscow, Russia;
| | - Vadim S. Ziborov
- Laboratory of Nanobiotechnology, Institute of Biomedical Chemistry, Pogodinskaya St. 10 Build. 8, 119121 Moscow, Russia; (N.S.B.); (V.S.Z.)
- Laboratory of Shock Wave Impacts, Joint Institute for High Temperatures of Russian Academy of Sciences, Izhorskaya St. 13 Build. 2, 125412 Moscow, Russia
| |
Collapse
|
5
|
Zhang Y, Wang Y, Zhou Q, Chen X, Jiao W, Li G, Peng M, Liu X, He Y, Fan H. Precise Regulation of Enzyme-Nanozyme Cascade Reaction Kinetics by Magnetic Actuation toward Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52395-52405. [PMID: 34714628 DOI: 10.1021/acsami.1c15717] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Spatiotemporal regulation of multi-enzyme catalysis with stimuli is crucial in nature to meet different metabolic requirements but presents a challenge in artificial cascade systems. Here, we report a strategy for precise and tunable modulation of enzyme-nanozyme cascade reaction kinetics by remote magnetic stimulation. As a proof of concept, glucose oxidase (GOx) was immobilized onto a ferrimagnetic vortex iron oxide nanoring (Fe3O4 NR) functionalized with poly(ethylene glycol) of different molecular weights to construct a series of Fe3O4 NR@GOx with nanometer linking distances. The activities of GOx and the Fe3O4 NR nanozyme in these systems were shown to be differentially stimulated by Fe3O4 NR-mediated local heat in response to an alternating magnetic field (AMF), leading to modulated cascade reaction kinetics in a distance-dependent manner. Compared to the free GOx and Fe3O4 NR mixture, Fe3O4 NR(D2)@GOx with an optimum linking distance of 1 nm exhibits a superior kinetic match between GOx and the Fe3O4 NR nanozyme and over a 400-fold higher cascade activity under AMF exposure. This enables remarkable intracellular reactive oxygen species production and significantly improved tumor inhibition of AMF-stimulated Fe3O4 NR(D2)@GOx in 4T1 tumor-bearing mice. The strategy reported here offers a straightforward new tool for fine-tuning multi-enzyme catalysis at the molecular level using magnetic stimuli and holds great promise for use in a variety of biotechnology and synthetic biology applications.
Collapse
Affiliation(s)
- Ye Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Yanyun Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Qi Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Xiaoyong Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Wangbo Jiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Galong Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences & School of Medicine, Northwest University, 229 Taibai North Road, Xi'an Shaanxi 710069, P. R. China
| | - Mingli Peng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Xiaoli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences & School of Medicine, Northwest University, 229 Taibai North Road, Xi'an Shaanxi 710069, P. R. China
| | - Yuan He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
| | - Haiming Fan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, Ministry of Education, College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi'an, Shaanxi 710127, P. R. China
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences & School of Medicine, Northwest University, 229 Taibai North Road, Xi'an Shaanxi 710069, P. R. China
| |
Collapse
|
6
|
Tacias-Pascacio VG, Morellon-Sterling R, Castañeda-Valbuena D, Berenguer-Murcia Á, Kamli MR, Tavano O, Fernandez-Lafuente R. Immobilization of papain: A review. Int J Biol Macromol 2021; 188:94-113. [PMID: 34375660 DOI: 10.1016/j.ijbiomac.2021.08.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022]
Abstract
Papain is a cysteine protease from papaya, with many applications due to its broad specificity. This paper reviews for first time the immobilization of papain on different supports (organic, inorganic or hybrid supports) presenting some of the features of the utilized immobilization strategies (e.g., epoxide, glutaraldehyde, genipin, glyoxyl for covalent immobilization). Special focus is placed on the preparation of magnetic biocatalysts, which will permit the simple recovery of the biocatalyst even if the medium is a suspension. Problems specific to the immobilization of proteases (e.g., steric problems when hydrolyzing large proteins) are also defined. The benefits of a proper immobilization (enzyme stabilization, widening of the operation window) are discussed, together with some artifacts that may suggest an enzyme stabilization that may be unrelated to enzyme rigidification.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Roberto Morellon-Sterling
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid. Spain
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Majid Rasool Kamli
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddad 21589, Saudi Arabia; Center of excellence in Bionanoscience Research, King Abdulaziz University, Jeddad 21589, Saudi Arabia
| | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis. ICP-CSIC./Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid. Spain; Center of Excellence in Bionanoscience Research, External advisory board, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
7
|
Rumyantceva V, Rumyantceva V, Andreeva Y, Tsvetikova S, Radaev A, Vishnevskaya M, Vinogradov V, Drozdov AS, Koshel E. Magnetically Controlled Carbonate Nanocomposite with Ciprofloxacin for Biofilm Eradication. Int J Mol Sci 2021; 22:6187. [PMID: 34201173 PMCID: PMC8229197 DOI: 10.3390/ijms22126187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 01/09/2023] Open
Abstract
Biofilms are the reason for a vast majority of chronic inflammation cases and most acute inflammation. The treatment of biofilms still is a complicated task due to the low efficiency of drug delivery and high resistivity of the involved bacteria to harmful factors. Here we describe a magnetically controlled nanocomposite with a stimuli-responsive release profile based on calcium carbonate and magnetite with an encapsulated antibiotic (ciprofloxacin) that can be used to solve this problem. The material magnetic properties allowed targeted delivery, accumulation, and penetration of the composite in the biofilm, as well as the rapid triggered release of the entrapped antibiotic. Under the influence of an RF magnetic field with a frequency of 210 kHz, the composite underwent a phase transition from vaterite into calcite and promoted the release of ciprofloxacin. The effectiveness of the composite was tested against formed biofilms of E. coli and S. aureus and showed a 71% reduction in E. coli biofilm biomass and an 85% reduction in S. aureus biofilms. The efficiency of the composite with entrapped ciprofloxacin was higher than for the free antibiotic in the same concentration, up to 72%. The developed composite is a promising material for the treatment of biofilm-associated inflammations.
Collapse
Affiliation(s)
- Viktoriya Rumyantceva
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova st., 9, 191002 St. Petersburg, Russia; (V.R.); (V.R.); (Y.A.); (S.T.); (V.V.)
| | - Valeriya Rumyantceva
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova st., 9, 191002 St. Petersburg, Russia; (V.R.); (V.R.); (Y.A.); (S.T.); (V.V.)
| | - Yulia Andreeva
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova st., 9, 191002 St. Petersburg, Russia; (V.R.); (V.R.); (Y.A.); (S.T.); (V.V.)
| | - Sofia Tsvetikova
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova st., 9, 191002 St. Petersburg, Russia; (V.R.); (V.R.); (Y.A.); (S.T.); (V.V.)
| | - Anton Radaev
- Chromas Research Resource Center, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.); (M.V.)
| | - Maria Vishnevskaya
- Chromas Research Resource Center, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.R.); (M.V.)
| | - Vladimir Vinogradov
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova st., 9, 191002 St. Petersburg, Russia; (V.R.); (V.R.); (Y.A.); (S.T.); (V.V.)
| | - Andrey S. Drozdov
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova st., 9, 191002 St. Petersburg, Russia; (V.R.); (V.R.); (Y.A.); (S.T.); (V.V.)
- Laboratory of Nanobiotechnology, Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, 9, 141701 Dolgoprudny, Moscow Region, Russia
| | - Elena Koshel
- International Institute Solution Chemistry of Advanced Materials and Technologies, ITMO University, Lomonosova st., 9, 191002 St. Petersburg, Russia; (V.R.); (V.R.); (Y.A.); (S.T.); (V.V.)
| |
Collapse
|
8
|
Abstract
The majority of biological processes are regulated by enzymes, precise control over specific enzymes could create the potential for controlling cellular processes remotely. We show that the thermophilic enzyme thermolysin can be remotely activated in 17.76 MHz radiofrequency (RF) fields when covalently attached to 6.1 nm gold coated magnetite nanoparticles. Without raising the bulk solution temperature, we observe enzyme activity as if the solution was 16 ± 2 °C warmer in RF fields-an increase in enzymatic rate of 129 ± 8%. Kinetics studies show that the activity increase of the enzyme is consistent with the induced fit of a hot enzyme with cold substrate.
Collapse
|
9
|
Kladko DV, Zakharzhevskii MA, Vinogradov VV. Magnetic Field-Mediated Control of Whole-Cell Biocatalysis. J Phys Chem Lett 2020; 11:8989-8996. [PMID: 33035064 DOI: 10.1021/acs.jpclett.0c02564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For decades, scientists have been looking for a way to control catalytic and biocatalytic processes through external physical stimuli. In this Letter, for the first time, we demonstrate the 150 ± 8% increase of the conversion of glucose to ethanol by Saccharomyces cerevisiae due to the application of a low-frequency magnetic field (100 Hz). This effect was achieved by the specially developed magnetic urchin-like particles, consisting of micrometer-sized core coated nanoneedles with high density, which could provide a biosafe permeabilization of cell membranes in a selected frequency and concentration range. We propose an acceleration mechanism based on magnetic field-induced cell membrane permeabilization. The ability to control cell metabolism without affecting their viability is a promising way for industrial biosynthesis to obtain a beneficial product with genetically engineered cells and subsequent improvement of biotechnological processes.
Collapse
Affiliation(s)
- Daniil V Kladko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| | - Maxim A Zakharzhevskii
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 197101 Saint-Petersburg, Russia
| |
Collapse
|
10
|
Organically-doped mesoporous cobalt boride for enzymatic catalysis. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Xiong R, Zhang W, Zhang Y, Zhang Y, Chen Y, He Y, Fan H. Remote and real time control of an FVIO-enzyme hybrid nanocatalyst using magnetic stimulation. NANOSCALE 2019; 11:18081-18089. [PMID: 31343649 DOI: 10.1039/c9nr04289j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Remote modulation of nanoscale biochemical processes in a living system using magnetic stimulation is appealing but is restricted by the lack of a highly efficient nanomediator which can deliver timely and effective response to biological molecules under an external magnetic field. Herein, we report the development of a novel nanocatalyst based on a ferrimagnetic vortex-domain nanoring (FVIO)-enzyme hybrid that enables real-time modulation of enzymatic catalysis under an alternating magnetic field (AMF). The role of the FVIO is to provide localized heating immediately upon exposure to an AMF, which efficiently and selectively promotes the activity of conjugated enzymes on the surface. The reaction rate of the as-fabricated FVIO-β-Gal hybrid was shown to be boosted up to 180% of its initial value by localized heat generated under an AMF of 550 Oe in less than 2 s and without heating up the bulk solution. Moreover, the degree of activity acceleration was shown to be tunable by increasing the strength of the AMF. The concept of remote magnetic stimulation of enzymatic reactions has been further applied to other enzymes (e.g. FVIO-KPC and FVIO-GOx), demonstrating the general applicability of this strategy. Since almost all metabolic processes in cells rely on enzymatic catalysis to sustain life, the FVIO-enzyme system developed in this work provides a valuable nanoplatform for spatiotemporally manipulating biochemical reactions, which might pave the way for future remote manipulation of living organisms.
Collapse
Affiliation(s)
- Ran Xiong
- College of Chemistry and Materials Science, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Northwest University, 1 Xue Fu Avenue, Xi'an, 710127, Shaanxi, China.
| | | | | | | | | | | | | |
Collapse
|
12
|
Claaßen C, Gerlach T, Rother D. Stimulus-Responsive Regulation of Enzyme Activity for One-Step and Multi-Step Syntheses. Adv Synth Catal 2019; 361:2387-2401. [PMID: 31244574 PMCID: PMC6582597 DOI: 10.1002/adsc.201900169] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/25/2019] [Indexed: 01/20/2023]
Abstract
Multi-step biocatalytic reactions have gained increasing importance in recent years because the combination of different enzymes enables the synthesis of a broad variety of industrially relevant products. However, the more enzymes combined, the more crucial it is to avoid cross-reactivity in these cascade reactions and thus achieve high product yields and high purities. The selective control of enzyme activity, i.e., remote on-/off-switching of enzymes, might be a suitable tool to avoid the formation of unwanted by-products in multi-enzyme reactions. This review compiles a range of methods that are known to modulate enzyme activity in a stimulus-responsive manner. It focuses predominantly on in vitro systems and is subdivided into reversible and irreversible enzyme activity control. Furthermore, a discussion section provides indications as to which factors should be considered when designing and choosing activity control systems for biocatalysis. Finally, an outlook is given regarding the future prospects of the field.
Collapse
Affiliation(s)
- Christiane Claaßen
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
| | - Tim Gerlach
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| | - Dörte Rother
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| |
Collapse
|