1
|
Mohamed Yunus RA, Koch M, Dieudonné-George P, Truzzolillo D, Colby RH, Parisi D. Water-Driven Sol-Gel Transition in Native Cellulose/1-Ethyl-3-methylimidazolium Acetate Solutions. ACS Macro Lett 2024:219-226. [PMID: 38285692 PMCID: PMC10883029 DOI: 10.1021/acsmacrolett.3c00710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The addition of water to native cellulose/1-ethyl-3-methylimidazolium acetate solutions catalyzes the formation of gels, where polymer chain-chain intermolecular associations act as cross-links. However, the relationship between water content (Wc), polymer concentration (Cp), and gel strength is still missing. This study provides the fundamentals to design water-induced gels. First, the sol-gel transition occurs exclusively in entangled solutions, while in unentangled ones, intramolecular associations hamper interchain cross-linking, preventing the gel formation. In entangled systems, the addition of water has a dual impact: at low water concentrations, the gel modulus is water-independent and controlled by entanglements. As water increases, more cross-links per chain than entanglements emerge, causing the modulus of the gel to scale as Gp ∼ Cp2Wc3.0±0.2. Immersing the solutions in water yields hydrogels with noncrystalline, aggregate-rich structures. Such water-ionic liquid exchange is examined via Raman, FTIR, and WAXS. Our findings provide avenues for designing biogels with desired rheological properties.
Collapse
Affiliation(s)
- Roshan Akdar Mohamed Yunus
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Philippe Dieudonné-George
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS Université de Montpellier, Montpellier 34095, France
| | - Domenico Truzzolillo
- Laboratoire Charles Coulomb (L2C), UMR 5221 CNRS Université de Montpellier, Montpellier 34095, France
| | - Ralph H Colby
- Department of Materials Science and Engineering, Penn State University, University Park, Pennsylvania 16802, United States
| | - Daniele Parisi
- Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Li X, Wu X. The microspheres/hydrogels scaffolds based on the proteins, nucleic acids, or polysaccharides composite as carriers for tissue repair: A review. Int J Biol Macromol 2023; 253:126611. [PMID: 37652329 DOI: 10.1016/j.ijbiomac.2023.126611] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/31/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
There are many studies on specific macromolecules and their contributions to tissue repair. Macromolecules have supporting and protective effects in organisms and can help regrow, reshape, and promote self-repair and regeneration of damaged tissues. Macromolecules, such as proteins, nucleic acids, and polysaccharides, can be constructed into hydrogels for the preparation of slow-release drug agents, carriers for cell culture, and platforms for gene delivery. Hydrogels and microspheres are fabricated by chemical crosslinking or mixed co-deposition often used as scaffolds, drug carriers, or cell culture matrix, provide proper mechanical support and nutrient delivery, a well-conditioned environment that to promote the regeneration and repair of damaged tissues. This review provides a comprehensive overview of recent developments in the construction of macromolecules into hydrogels and microspheres based on the proteins, nucleic acids, polysaccharides and other polymer and their application in tissue repair. We then discuss the latest research trends regarding the advantages and disadvantages of these composites in repair tissue. Further, we examine the applications of microspheres/hydrogels in different tissue repairs, such as skin tissue, cartilage, tumor tissue, synovial, nerve tissue, and cardiac repair. The review closes by highlighting the challenges and prospects of microspheres/hydrogels composites.
Collapse
Affiliation(s)
- Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xinlin Wu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot 010050, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
3
|
Zou L, Geng X, Li Z, Li T. Design of highly active substrates using molecular docking for microbial transglutaminase detection. RSC Adv 2023; 13:5259-5265. [PMID: 36793302 PMCID: PMC9923216 DOI: 10.1039/d2ra06467g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
The transglutaminase (TGase) family catalyzes a transamidation reaction between glutamine (Gln) and lysine (Lys) residues on protein substrates. Highly active substrates are important for cross-linking and modifying proteins of TGase. In the present work, high-activity substrates have been designed based on the principles of enzyme-substrate interaction, using microbial transglutaminase (mTGase) as a research model of the TGase family. Substrates with high activity were screened using a combination of molecular docking and traditional experiments. Twenty-four sets of peptide substrates all produced good catalytic activity with mTGase. FFKKAYAV as the acyl acceptor and VLQRAY as the acyl donor group had the best reaction efficiency with highly sensitive detection of 26 nM mTGase. In addition, the substrate grouping, KAYAV and AFQSAY, detected 130 nM mTGase under physiological conditions (37 °C, pH 7.4), producing 20-fold higher activity than the natural substrate, collagen. The experimental results confirmed the potential for design of high-activity substrates by a combination of molecular docking and traditional experiments under physiological conditions.
Collapse
Affiliation(s)
- Longhao Zou
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, School of Life Sciences, Jilin University Changchun China
| | - Xu Geng
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, School of Life Sciences, Jilin University Changchun China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, School of Life Sciences, Jilin University Changchun China
| | - Tao Li
- Key Laboratory for Molecular Enzymology & Engineering, The Ministry of Education, School of Life Sciences, Jilin University Changchun China
| |
Collapse
|
4
|
Mishra K, Devi N, Siwal SS, Zhang Q, Alsanie WF, Scarpa F, Thakur VK. Ionic Liquid-Based Polymer Nanocomposites for Sensors, Energy, Biomedicine, and Environmental Applications: Roadmap to the Future. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202187. [PMID: 35853696 PMCID: PMC9475560 DOI: 10.1002/advs.202202187] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Indexed: 05/19/2023]
Abstract
Current interest toward ionic liquids (ILs) stems from some of their novel characteristics, like low vapor pressure, thermal stability, and nonflammability, integrated through high ionic conductivity and broad range of electrochemical strength. Nowadays, ionic liquids represent a new category of chemical-based compounds for developing superior and multifunctional substances with potential in several fields. ILs can be used in solvents such as salt electrolyte and additional materials. By adding functional physiochemical characteristics, a variety of IL-based electrolytes can also be used for energy storage purposes. It is hoped that the present review will supply guidance for future research focused on IL-based polymer nanocomposites electrolytes for sensors, high performance, biomedicine, and environmental applications. Additionally, a comprehensive overview about the polymer-based composites' ILs components, including a classification of the types of polymer matrix available is provided in this review. More focus is placed upon ILs-based polymeric nanocomposites used in multiple applications such as electrochemical biosensors, energy-related materials, biomedicine, actuators, environmental, and the aviation and aerospace industries. At last, existing challenges and prospects in this field are discussed and concluding remarks are provided.
Collapse
Affiliation(s)
- Kirti Mishra
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Nishu Devi
- Mechanics and Energy LaboratoryDepartment of Civil and Environmental EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Samarjeet Singh Siwal
- Department of ChemistryM.M. Engineering CollegeMaharishi Markandeshwar (Deemed to be University)Mullana‐AmbalaHaryana133207India
| | - Qibo Zhang
- Key Laboratory of Ionic Liquids MetallurgyFaculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunming650093P. R. China
- State Key Laboratory of Complex Nonferrous Metal Resources Cleaning Utilization in Yunnan ProvinceKunming650093P. R. China
| | - Walaa F. Alsanie
- Department of Clinical Laboratories SciencesThe Faculty of Applied Medical SciencesTaif UniversityP.O. Box 11099Taif21944Saudi Arabia
| | - Fabrizio Scarpa
- Bristol Composites InstituteUniversity of BristolBristolBS8 1TRUK
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research CenterScotland's Rural College (SRUC)Kings Buildings, West Mains RoadEdinburghEH9 3JGUK
- School of EngineeringUniversity of Petroleum and Energy Studies (UPES)DehradunUttarakhand248007India
| |
Collapse
|
5
|
Lai E, Bao B, Zhu Y, Lin H. Transglutaminase-Catalyzed Bottom-Up Synthesis of Polymer Hydrogel. Front Bioeng Biotechnol 2022; 10:824747. [PMID: 35392400 PMCID: PMC8980521 DOI: 10.3389/fbioe.2022.824747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Enzyme catalysis has attracted increasing attention for application in the synthesis of polymer hydrogel due to the eco-friendly process and the devisable catalytic reaction. Moreover, bottom-up approaches combining enzyme catalysts and molecular self-assembly have been explored for synthesizing hydrogel with complex architectures. An enzyme widely distributed in nature, transglutaminase (TGase) has been confirmed to catalyze the formation of isopeptide bonds between proteins, which can effectively improve the gelation of proteins. In this mini-review, TGase-catalyzed synthesis of polymer hydrogels, including fibrin hydrogels, polyethylene glycol hydrogels, soy protein hydrogels, collagen hydrogels, gelatin hydrogels and hyaluronan hydrogels, has been reviewed in detail. The catalytic process and gel formation mechanism by TGase have also been considered. Furthermore, future perspectives and challenges in the preparation of polymer hydrogels by TGase are also highlighted.
Collapse
|
6
|
Liu S, Lau CS, Liang K, Wen F, Teoh SH. Marine collagen scaffolds in tissue engineering. Curr Opin Biotechnol 2021; 74:92-103. [PMID: 34920212 DOI: 10.1016/j.copbio.2021.10.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 02/08/2023]
Abstract
Collagen is the primary component of the extracellular matrix in humans. Traditionally commercial collagen is confined to bovine and porcine sources which have concerns of pathogenic transfer. Marine wastage accounts up to 85% by weight in the fishing industry. Extraction of collagen from these wastes for economic value and environmental sustainability is clear. Marine collagens have several advantages such as excellent biocompatibility, lower zoonotic risks, less immunological risk for patients allergic to mammalian products, and less religious restrictions. However, the properties of marine collagen-based constructs are highly dependent on the methods of fabrication. This article reviews advances in the design and fabrication of marine collagen-based constructs for medical applications. The potential applications of marine collagen in the regeneration of skin, bone and cartilage were also highlighted.
Collapse
Affiliation(s)
- Shaoqiong Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore
| | - Chau-Sang Lau
- Oral Health Academic Clinical Programme, Duke-NUS Medical School, Singapore, 169857, Singapore; Academic Clinical Programme Office (Research), National Dental Centre Singapore, Singapore, 168938, Singapore
| | - Kun Liang
- Skin Research Institute of Singapore (SRIS), Agency for Science, Technology and Research (A*STAR), Singapore, 138648, Singapore
| | - Feng Wen
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang Province, People's Republic of China
| | - Swee Hin Teoh
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637457, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore.
| |
Collapse
|
7
|
Correia DM, Fernandes LC, Fernandes MM, Hermenegildo B, Meira RM, Ribeiro C, Ribeiro S, Reguera J, Lanceros-Méndez S. Ionic Liquid-Based Materials for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2401. [PMID: 34578716 PMCID: PMC8471968 DOI: 10.3390/nano11092401] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
Ionic liquids (ILs) have been extensively explored and implemented in different areas, ranging from sensors and actuators to the biomedical field. The increasing attention devoted to ILs centers on their unique properties and possible combination of different cations and anions, allowing the development of materials with specific functionalities and requirements for applications. Particularly for biomedical applications, ILs have been used for biomaterials preparation, improving dissolution and processability, and have been combined with natural and synthetic polymer matrixes to develop IL-polymer hybrid materials to be employed in different fields of the biomedical area. This review focus on recent advances concerning the role of ILs in the development of biomaterials and their combination with natural and synthetic polymers for different biomedical areas, including drug delivery, cancer therapy, tissue engineering, antimicrobial and antifungal agents, and biosensing.
Collapse
Affiliation(s)
- Daniela Maria Correia
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- Centre of Chemistry, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Liliana Correia Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
| | - Margarida Macedo Fernandes
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Bruno Hermenegildo
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Rafaela Marques Meira
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Clarisse Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sylvie Ribeiro
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IB-S—Institute for Research and Innovation on Bio-Sustainability, University of Minho, 4710-057 Braga, Portugal
| | - Javier Reguera
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain;
| | - Senentxu Lanceros-Méndez
- Centre of Physics, University of Minho, 4710-058 Braga, Portugal; (L.C.F.); (M.M.F.); (R.M.M.); (C.R.); (S.R.)
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
8
|
Song W, Ko J, Choi YH, Hwang NS. Recent advancements in enzyme-mediated crosslinkable hydrogels: In vivo-mimicking strategies. APL Bioeng 2021; 5:021502. [PMID: 33834154 PMCID: PMC8018798 DOI: 10.1063/5.0037793] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Enzymes play a central role in fundamental biological processes and have been traditionally used to trigger various processes. In recent years, enzymes have been used to tune biomaterial responses and modify the chemical structures at desired sites. These chemical modifications have allowed the fabrication of various hydrogels for tissue engineering and therapeutic applications. This review provides a comprehensive overview of recent advancements in the use of enzymes for hydrogel fabrication. Strategies to enhance the enzyme function and improve biocompatibility are described. In addition, we describe future opportunities and challenges for the production of enzyme-mediated crosslinkable hydrogels.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S. Hwang
- Author to whom correspondence should be addressed:. Tel.: 82-2-880-1635. Fax: 82-2-880-7295
| |
Collapse
|
9
|
Chen Z, Fan D, Shang L. Exploring the potential of the recombinant human collagens for biomedical and clinical applications: a short review. ACTA ACUST UNITED AC 2020; 16:012001. [PMID: 32679570 DOI: 10.1088/1748-605x/aba6fa] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural animal collagen and its recombinant collagen are favourable replacements in human tissue engineering due to their remarkable biomedical property. However, this exploitation is largely restricted due to the potential of immunogenicity and virus contamination. Exploring new ways to produce human collagen is fundamental to its biomedical and clinical application. All human fibrillar collagen molecules have three polypeptide chains constructed from a repeating Gly-Xaa-Yaa triplet, where Xaa and Yaa represent one random amino acid. Using cDNA techniques to modify several repeat sequences of the cDNA fragment, a novel human collagen, named recombinant human-like collagen (rHLC), with low immunogenicity and little risk from hidden virus can be engineered and notably tailored to specific applications. Human-like collagen (HLC) was initially used as a coating to modify the tissue engineering scaffold, and then used as the scaffold after cross-link agents were added to increase its mechanical strength. Due to its good biocompatibility, low immunogenicity, stabilised property, and the ability of mass production, HLC has been widely used in skin injury treatments, vascular scaffolds engineering, cartilage, bone defect repair, skincare, haemostatic sponge, and drug delivery, including coating with medical nanoparticles. In this review, we symmetrically reviewed the development, recent advances in design and application of HLC, and other recombinant human collagen-based biomedicine potentials. At the end, future improvements are also discussed.
Collapse
Affiliation(s)
- Zhuoyue Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China. Shaanxi Key Laboratory of Degradable Biomedical Materials; Shaanxi R&D Center of Biomaterial and Fermentation Engineering, School of Chemical Engineering, Northwest University, 229 TaiBai North Road, Xi'an, Shaanxi Province 710069, People's Republic of China
| | | | | |
Collapse
|
10
|
Silva SS, Gomes JM, Rodrigues LC, Reis RL. Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Mar Drugs 2020; 18:E346. [PMID: 32629815 PMCID: PMC7401240 DOI: 10.3390/md18070346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 01/05/2023] Open
Abstract
Marine resources have considerable potential to develop high-value materials for applications in different fields, namely pharmaceutical, environmental, and biomedical. Despite that, the lack of solubility of marine-derived polymers in water and common organic solvents could restrict their applications. In the last years, ionic liquids (ILs) have emerged as platforms able to overcome those drawbacks, opening many routes to enlarge the use of marine-derived polymers as biomaterials, among other applications. From this perspective, ILs can be used as an efficient extraction media for polysaccharides from marine microalgae and wastes (e.g., crab shells, squid, and skeletons) or as solvents to process them in different shapes, such as films, hydrogels, nano/microparticles, and scaffolds. The resulting architectures can be applied in wound repair, bone regeneration, or gene and drug delivery systems. This review is focused on the recent research on the applications of ILs as processing platforms of biomaterials derived from marine polymers.
Collapse
Affiliation(s)
- Simone S. Silva
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Joana M. Gomes
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Luísa C. Rodrigues
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - Rui L. Reis
- 3B´s Research Group, I3Bs- Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal; (J.M.G.); (L.C.R.); (R.L.R.)
- ICVS/3B´s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal
| |
Collapse
|
11
|
Singhal A, Sinha N, Kumari P, Purkayastha M. Synthesis and Applications of Hydrogels in Cancer Therapy. Anticancer Agents Med Chem 2020; 20:1431-1446. [PMID: 31958041 DOI: 10.2174/1871521409666200120094048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 11/10/2019] [Accepted: 12/04/2019] [Indexed: 11/22/2022]
Abstract
Hydrogels are water-insoluble, hydrophilic, cross-linked, three-dimensional networks of polymer chains having the ability to swell and absorb water but do not dissolve in it, that comprise the major difference between gels and hydrogels. The mechanical strength, physical integrity and solubility are offered by the crosslinks. The different applications of hydrogels can be derived based on the methods of their synthesis, response to different stimuli, and their different kinds. Hydrogels are highly biocompatible and have properties similar to human tissues that make it suitable to be used in various biomedical applications, including drug delivery and tissue engineering. The role of hydrogels in cancer therapy is highly emerging in recent years. In the present review, we highlighted different methods of synthesis of hydrogels and their classification based on different parameters. Distinctive applications of hydrogels in the treatment of cancer are also discussed.
Collapse
Affiliation(s)
- Anchal Singhal
- Department of Chemistry, St. Joseph's College (Autonomous), Bangalore-560027, India
| | - Niharika Sinha
- Department of Chemistry, Gautam Buddha University, Noida, India
| | - Pratibha Kumari
- Department of Chemistry, Deshbandhu College, University of Delhi, New Delhi, India
| | | |
Collapse
|
12
|
Mahmood H, Moniruzzaman M. Recent Advances of Using Ionic Liquids for Biopolymer Extraction and Processing. Biotechnol J 2019; 14:e1900072. [DOI: 10.1002/biot.201900072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/19/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Hamayoun Mahmood
- Department of ChemicalPolymer and Composite Materials EngineeringUniversity of Engineering & Technology New campus, G. T. Road 39020 Lahore Pakistan
| | - Muhammad Moniruzzaman
- Center of Researches in Ionic LiquidsUniversiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
- Department of Chemical EngineeringUniversiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia
| |
Collapse
|