1
|
Liu M, Zhang Y, Jiang F, Guan W, Cui J, Liu L, Xie Q, Wang J, Xue S, Gu J, Zheng Z, Ren X, Wang X. Modulating dual carrier-transfer channels and band structure in carbon nitride to amplify ROS storm for enhanced cancer photodynamic therapy. Mater Today Bio 2024; 29:101287. [PMID: 39435374 PMCID: PMC11491979 DOI: 10.1016/j.mtbio.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Graphite carbon nitride (CN) eliminates cancer cells by converting H2O2 to highly toxic •OH under visible light. However, its in vivo applications are constrained by insufficient endogenous H2O2, accumulation of OH- and finite photocarriers. We designed Fe/NV-CN, co-modified CN with nitrogen vacancies (NV) and ferric ions (Fe3+). NV and Fe3+, not only adjust the band structure of CN through quantum confinement effect and the altered coupled oscillations of atomic orbitals to facilitates •OH production by oxidizing OH-, but also construct dual carrier-transfer channels for electrons and holes to respective active sites by introducing stepped electrostatic potential and shortening three-electron bonds, thereby involving more carriers in •OH production. Fe/NV-CN, the novel reactor, effectually produces vast •OH under illumination by expanding OH- as the raw material of •OH and augmenting carriers at active sites, which induces cancer cell apoptosis by disrupting mitochondrial function for significant shrinkage of Cal27 cell-induced tumor under illumination. This work provides not only an effective photosensitizer avoiding the accumulation of OH- for cancer therapy but also a novel strategy by constructing dual carrier-transfer channels on semiconductor photosensitizers for improving the therapeutic effect of photodynamic therapy.
Collapse
Affiliation(s)
- Meixian Liu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yuan Zhang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Fa Jiang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030600, China
| | - Wenzhao Guan
- Second Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jing Cui
- The Third Hospital of Shanxi Medical University, Taiyuan, 030032, China
| | - Liwei Liu
- First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Qingpeng Xie
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jia Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Shuyun Xue
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Jiawen Gu
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhanfeng Zheng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, China
| | - Xiuyun Ren
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| | - Xing Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
2
|
Truong DH, Tran PTT, Tran TH. Nanoparticles as carriers of photosensitizers to improve photodynamic therapy in cancer. Pharm Dev Technol 2024; 29:221-235. [PMID: 38407140 DOI: 10.1080/10837450.2024.2322570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Photodynamic therapy (PDT) has emerged as a promising non invasive therapeutic approach for cancer treatment, offering unique advantages over conventional treatments. The combination of light activation and photosensitizing agents allows for targeted and localized destruction of cancer cells, reducing damage to surrounding healthy tissues. In recent years, the integration of nanoparticles with PDT has garnered significant attention due to their potential to enhance therapeutic outcomes. This review article aims to provide a comprehensive overview of the current state-of-the-art in utilizing nanoparticles for photodynamic therapy in cancer treatment. We summarized various nanoparticle-based approaches, their properties, and their implications in optimizing PDT efficacy, and discussed challenges and prospects in the field.
Collapse
Affiliation(s)
| | - Phuong Thi Thu Tran
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Tuan Hiep Tran
- Faculty of Pharmacy, PHENIKAA University, Hanoi, Vietnam
| |
Collapse
|
3
|
Hu D, Xia M, Wu L, Liu H, Chen Z, Xu H, He C, Wen J, Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater Today Bio 2023; 20:100673. [PMID: 37441136 PMCID: PMC10333687 DOI: 10.1016/j.mtbio.2023.100673] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is one of the most serious central nervous system diseases, with high mortality and poor prognosis. Despite the continuous development of existing treatment methods, the median survival time of glioma patients is still only 15 months. The main treatment difficulties are the invasive growth of glioma and the obstruction of the blood-brain barrier (BBB) to drugs. With rapid advancements in nanotechnology, inorganic nanoparticles (INPs) have shown favourable application prospects in the diagnosis and treatment of glioma. Due to their extraordinary intrinsic features, INPs can be easily fabricated, while doping with other elements and surface modification by biological ligands can be used to enhance BBB penetration, targeted delivery and biocompatibility. Guided glioma theranostics with INPs can improve and enhance the efficacy of traditional methods such as chemotherapy, radiotherapy and gene therapy. New strategies, such as immunotherapy, photothermal and photodynamic therapy, magnetic hyperthermia therapy, and multifunctional inorganic nanoplatforms, have also been facilitated by INPs. This review emphasizes the current state of research and clinical applications of INPs, including glioma targeting and BBB penetration enhancement methods, in vivo and in vitro biocompatibility, and diagnostic and treatment strategies. As such, it provides insights for the development of novel glioma treatment strategies.
Collapse
Affiliation(s)
- Die Hu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Miao Xia
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Linxuan Wu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hanmeng Liu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Zhigang Chen
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Hefeng Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| | - Chuan He
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Jian Wen
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110032, China
| | - Xiaoqian Xu
- Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, 110122, China
| |
Collapse
|
4
|
Sadek AA, Abd-Elkareem M, Abdelhamid HN, Moustafa S, Hussein K. Repair of critical-sized bone defects in rabbit femurs using graphitic carbon nitride (g-C 3N 4) and graphene oxide (GO) nanomaterials. Sci Rep 2023; 13:5404. [PMID: 37012344 PMCID: PMC10070441 DOI: 10.1038/s41598-023-32487-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Various biomaterials have been evaluated to enhance bone formation in critical-sized bone defects; however, the ideal scaffold is still missing. The objective of this study was to investigate the in vitro and in vivo regenerative capacity of graphitic carbon nitride (g-C3N4) and graphene oxide (GO) nanomaterials to stimulate critical-sized bone defect regeneration. The in vitro cytotoxicity and hemocompatibility of g-C3N4 and GO were evaluated, and their potential to induce the in vitro osteogenesis of human fetal osteoblast (hFOB) cells was assessed using qPCR. Then, bone defect in femoral condyles was created in rabbits and left empty as control or filled with either g-C3N4 or GO. The osteogenesis of the different implanted scaffolds was evaluated after 4, 8, and 12 weeks of surgery using X-ray, computed tomography (CT), macro/microscopic examinations, and qPCR analysis of osteocalcin (OC) and osteopontin (OP) expressions. Both materials displayed good cell viability and hemocompatibility with enhanced collagen type-I (Col-I), OC, and OP expressions of the hFOB cells. Compared to the control group, the bone healing process in g-C3N4 and GO groups was promoted in vivo. Moreover, complete healing of the bone defect was observed radiologically and grossly in g-C3N4 implanted group. Additionally, g-C3N4 implanted group showed higher percentages of osteoid tissue, mature collagen, biodegradation, and expressions of OC and OP. In conclusion, our results revealed that g-C3N4 and GO nanomaterials could induce osteogenesis in critical-sized bone defects.
Collapse
Affiliation(s)
- Ahmed Abdelrahiem Sadek
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Mahmoud Abd-Elkareem
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
- Proteomics Laboratory for Clinical Research and Materials Science, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, 11837, Cairo, Egypt
| | - Samia Moustafa
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt
| | - Kamal Hussein
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
5
|
Thirumurugan S, Dash P, Liu X, Tseng YY, Huang WJ, Li Y, Zhao G, Lin C, Murugan K, Dhawan U, Chung RJ. Angiopep-2-decorated titanium-alloy core-shell magnetic nanoparticles for nanotheranostics and medical imaging. NANOSCALE 2022; 14:14789-14800. [PMID: 36184995 DOI: 10.1039/d2nr03683e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The poor permeability of therapeutic agents across the blood-brain barrier and blood-tumor barrier is a significant barrier in glioma treatment. Low-density lipoprotein receptor-related protein (LRP-1) recognises a dual-targeting ligand, angiopep-2, which is overexpressed in the BBB and gliomas. Here, we have synthesized Ti@FeAu core-shell nanoparticles conjugated with angiopep-2 (Ti@FeAu-Ang nanoparticles) to target glioma cells and treat brain cancer via hyperthermia produced by a magnetic field. Our results confirmed that Ti@FeAu core-shell nanoparticles were superparamagnetic, improved the negative contrast effect on glioma, and exhibited a temperature elevation of 12° C upon magnetic stimulation, which implies potential applications in magnetic resonance imaging (MRI) and hyperthermia-based cancer therapy. Angiopep-2-decorated nanoparticles exhibited higher cellular uptake by C6 glioma cells than by L929 fibroblasts, demonstrating selective glioma targeting and improved cytotoxicity up to 85% owing to hyperthermia produced by a magnetic field. The in vivo findings demonstrated that intravenous injection of Ti@FeAu-Ang nanoparticles exhibited a 10-fold decrement in tumor volume compared to the control group. Furthermore, immunohistochemical analysis of Ti@FeAu-Ang nanoparticles showed that coagulative necrosis of tumor tissues and preliminary safety analysis highlighted no toxicity to the haematological system, after Ti@FeAu-Ang nanoparticle-induced hyperthermia treatment.
Collapse
Affiliation(s)
- Senthilkumar Thirumurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| | - Pranjyan Dash
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| | - Xinrui Liu
- Department of Neurosurgical Oncology, First Hospital of Jilin University, Changchun, China
| | - Yuan-Yun Tseng
- Department of Neurosurgery, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei City 236017, Taiwan
| | - Wei-Jhih Huang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| | - Yunqian Li
- Department of Neurosurgical Oncology, First Hospital of Jilin University, Changchun, China
| | - Gang Zhao
- Department of Neurosurgical Oncology, First Hospital of Jilin University, Changchun, China
| | - Chingpo Lin
- Department of Neurosurgical Oncology, First Hospital of Jilin University, Changchun, China
| | - Keerthi Murugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
- Department of Chemistry, Ethiraj College for Women, Chennai, Tamil Nadu, India
| | - Udesh Dhawan
- Centre for the Cellular Microenvironment, University of Glasgow, Scotland, UK.
| | - Ren-Jei Chung
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology (Taipei Tech), Taipei 10608, Taiwan.
| |
Collapse
|
6
|
Yadav P, Mimansa, Munawara R, Kapoor K, Chaturvedi S, Kailasam K, Biswas SK, Bahadur D, Srivastava R, Mishra AK, Shanavas A. Nontoxic In Vivo Clearable Nanoparticle Clusters for Theranostic Applications. ACS Biomater Sci Eng 2022; 8:2053-2065. [PMID: 35416030 DOI: 10.1021/acsbiomaterials.1c01579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Disintegrable inorganic nanoclusters (GIONs) with gold seed (GS) coating of an iron oxide core with a primary nanoparticle size less than 6 nm were prepared for theranostic applications. The GIONs possessed a broad near-infrared (NIR) absorbance at ∼750 nm because of plasmon coupling between closely positioned GSs on the iron oxide nanoclusters (ION) surface, in addition to the ∼513 nm peak corresponding to the isolated GS. The NIR laser-triggered photothermal response of GIONs was found to be concentration-dependent with a temperature rise of ∼8.5 and ∼4.5 °C from physiological temperature for 0.5 and 0.25 mg/mL, respectively. The nanoclusters were nonhemolytic and showed compatibility with human umbilical vein endothelial cells up to a concentration of 0.7 mg/mL under physiological conditions. The nanoclusters completely disintegrated at a lysosomal pH of 5.2 within 1 month. With an acute increase of over 400% intracellular reactive oxygen species soon after γ-irradiation and assistance from Fenton reaction-mediated supplemental oxidative stress, GION treatment in conjunction with radiation killed ∼50% of PLC/PRF/5 hepatoma cells. Confocal microscopy images of these cells showed significant cytoskeletal and nuclear damage from radiosensitization with GIONs. The cell viability further decreased to ∼10% when they were sequentially exposed to the NIR laser followed by γ-irradiation. The magnetic and optical properties of the nanoclusters enabled GIONs to possess a T2 relaxivity of ∼223 mM-1 s-1and a concentration-dependent strong photoacoustic signal toward magnetic resonance and optical imaging. GIONs did not incur any organ damage or evoke an acute inflammatory response in healthy C57BL/6 mice. Elemental analysis of various organs indicated differential clearance of gold and iron via both renal and hepatobiliary routes.
Collapse
Affiliation(s)
- Pranjali Yadav
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| | - Mimansa
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| | - Rafika Munawara
- Department of Anatomy, Government Medical College & Hospital, Sector 32, Chandigarh 160030, India
| | - Kanchan Kapoor
- Department of Anatomy, Government Medical College & Hospital, Sector 32, Chandigarh 160030, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | | | - Samir Kumar Biswas
- Department of Physical Sciences, Indian Institute of Science Education & Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli 140306, India
| | - Dhirendra Bahadur
- Department of Mechanical Engineering, Indian Institute of Technology Goa, Farmagudi, Ponda 403401, Goa, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology (INST), Sector 81, Mohali 140306, India
| |
Collapse
|
7
|
Khodaei A, Jahanmard F, Madaah Hosseini H, Bagheri R, Dabbagh A, Weinans H, Amin Yavari S. Controlled temperature-mediated curcumin release from magneto-thermal nanocarriers to kill bone tumors. Bioact Mater 2022; 11:107-117. [PMID: 34938916 PMCID: PMC8665343 DOI: 10.1016/j.bioactmat.2021.09.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/11/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Systemic chemotherapy has lost its position to treat cancer over the past years mainly due to drug resistance, side effects, and limited survival ratio. Among a plethora of local drug delivery systems to solve this issue, the combinatorial strategy of chemo-hyperthermia has recently received attention. Herein we developed a magneto-thermal nanocarrier consisted of superparamagnetic iron oxide nanoparticles (SPIONs) coated by a blend formulation of a three-block copolymer Pluronic F127 and F68 on the oleic acid (OA) in which Curcumin as a natural and chemical anti-cancer agent was loaded. The subsequent nanocarrier SPION@OA-F127/F68-Cur was designed with a controlled gelation temperature of the shell, which could consequently control the release of curcumin. The release was systematically studied as a function of temperature and pH, via response surface methodology (RSM). The bone tumor killing efficacy of the released curcumin from the carrier in combination with the hyperthermia was studied on MG-63 osteosarcoma cells through Alamar blue assay, live-dead staining and apoptosis caspase 3/7 activation kit. It was found that the shrinkage of the F127/F68 layer stimulated by elevated temperature in an alternative magnetic field caused the curcumin release. Although the maximum release concentration and cell death took place at 45 °C, treatment at 41 °C was chosen as the optimum condition due to considerable cell apoptosis and lower side effects of mild hyperthermia. The cell metabolic activity results confirmed the synergistic effects of curcumin and hyperthermia in killing MG-63 osteosarcoma cells.
Collapse
Affiliation(s)
- A. Khodaei
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - F. Jahanmard
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - H.R. Madaah Hosseini
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - R. Bagheri
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - A. Dabbagh
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - H. Weinans
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - S. Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Utrecht, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
8
|
Yadav P, Chaturvedi S, Biswas SK, Srivastava R, Kailasam K, Mishra AK, Shanavas A. Biodegradable Protein-Stabilized Inorganic Nanoassemblies for Photothermal Radiotherapy of Hepatoma Cells. ACS OMEGA 2022; 7:8928-8937. [PMID: 35309447 PMCID: PMC8928496 DOI: 10.1021/acsomega.1c07324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/17/2022] [Indexed: 05/24/2023]
Abstract
Inorganic nanomaterials require optimal engineering to retain their functionality yet can also biodegrade within physiological conditions to avoid chronic accumulation in their native form. In this work, we have developed gelatin-stabilized iron oxide nanoclusters having a primary crystallite size of ∼10 nm and surface-functionalized with indocyanine green (ICG)-bound albumin-stabilized gold nanoclusters (Prot-IONs). The Prot-IONs are designed to undergo disintegration in an acidic microenvironment of tumor in the presence of proteolytic enzymes within 72 h. These nanoassemblies demonstrate bio- and hemocompatibility and show significant photothermal efficiency due to strong near infrared absorption contributed by ICG. The surface gold nanoclusters could efficiently sensitize hepatoma cells to γ-irradiation with substantial cytoskeletal and nuclear damage. Sequential irradiation of Prot-ION-treated cancer cells with near infrared (NIR) laser (λ = 750 nm) and γ-irradiation could cause ∼90% cell death compared to single treatment groups at a lower dose of nanoparticles. The superparamagnetic nature of Prot-IONs imparted significant relaxivity (∼225 mM-1 s-1) for T2-weighted magnetic resonance imaging. Additionally, they could also be engaged as photoacoustic and NIR imaging contrast agents. This work demonstrates bioeliminable inorganic nanoassemblies with significant theranostic potential.
Collapse
Affiliation(s)
- Pranjali Yadav
- Institute
of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Shubhra Chaturvedi
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Samir Kumar Biswas
- Department
of Physical Sciences, Indian Institute of
Science Education & Research Mohali, Knowledge city, Sector 81, SAS Nagar, Manauli 140306, India
| | - Rohit Srivastava
- Department
of Biosciences & Bioengineering, Indian
Institute of Technology Bombay, Powai, Mumbai, Maharashtra 400076, India
| | - Kamalakannan Kailasam
- Institute
of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Anil Kumar Mishra
- Division
of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences, DRDO, Delhi 110054, India
| | - Asifkhan Shanavas
- Institute
of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| |
Collapse
|
9
|
Cao T, Tong W, Feng F, Zhang S, Li Y, Liang S, Wang X, Chen Z, Zhang Y. H 2O 2 generation enhancement by ultrasonic nebulisation with a zinc layer for spray disinfection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022. [PMID: 34899039 DOI: 10.1016/j.cej.2022.134886] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
With the outbreak of COVID-19, microbial pollution has gained increasing attention as a threat to human health. Consequently, many research efforts are being devoted to the development of efficient disinfection methods. In this context, hydrogen peroxide (H2O2) stands out as a green and broad-spectrum disinfectant, which can be produced and sprayed in the air directly by cavitation in ultrasonic nebulisation. However, the yield of H2O2 obtained by ultrasonic nebulisation is too low to satisfy the requirements for disinfection by spraying and needs to be improved to achieve efficient disinfection of the air and objects. Herein, we report the introduction of a zinc layer into an ultrasonic nebuliser to improve the production of H2O2 and generate additional Zn2+ by self-corrosion, achieving good disinfecting performance. Specifically, a zinc layer was assembled on the oscillator plate of a commercial ultrasonic nebuliser, resulting in a 21-fold increase in the yield of H2O2 and the production of 4.75 μg/mL Zn2+ in the spraying droplets. When the generated water mist was used to treat a bottle polluted with Escherichia coli for 30 min, the sterilisation rate reached 93.53%. This ultrasonic nebulisation using a functional zinc layer successfully enhanced the production of H2O2 while generating Zn2+, providing a platform for the development of new methodologies of spray disinfection.
Collapse
Affiliation(s)
- Tingting Cao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Feng Feng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yanan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shaojie Liang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhensheng Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
10
|
Yadav P, Mimansa, Kailasam K, Shanavas A. Nontoxic Metal-Free Visible Light-Responsive Carbon Nitride Quantum Dots Cause Oxidative Stress and Cancer-Specific Membrane Damage. ACS APPLIED BIO MATERIALS 2022; 5:1169-1178. [DOI: 10.1021/acsabm.1c01219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Pranjali Yadav
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Mimansa
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Kamalakannan Kailasam
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology, Sector-81, Knowledge City, SAS Nagar, Punjab 140306, India
| |
Collapse
|
11
|
Zhang C, Yan K, Fu C, Peng H, Hawker CJ, Whittaker AK. Biological Utility of Fluorinated Compounds: from Materials Design to Molecular Imaging, Therapeutics and Environmental Remediation. Chem Rev 2022; 122:167-208. [PMID: 34609131 DOI: 10.1021/acs.chemrev.1c00632] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The applications of fluorinated molecules in bioengineering and nanotechnology are expanding rapidly with the controlled introduction of fluorine being broadly studied due to the unique properties of C-F bonds. This review will focus on the design and utility of C-F containing materials in imaging, therapeutics, and environmental applications with a central theme being the importance of controlling fluorine-fluorine interactions and understanding how such interactions impact biological behavior. Low natural abundance of fluorine is shown to provide sensitivity and background advantages for imaging and detection of a variety of diseases with 19F magnetic resonance imaging, 18F positron emission tomography and ultrasound discussed as illustrative examples. The presence of C-F bonds can also be used to tailor membrane permeability and pharmacokinetic properties of drugs and delivery agents for enhanced cell uptake and therapeutics. A key message of this review is that while the promise of C-F containing materials is significant, a subset of highly fluorinated compounds such as per- and polyfluoroalkyl substances (PFAS), have been identified as posing a potential risk to human health. The unique properties of the C-F bond and the significant potential for fluorine-fluorine interactions in PFAS structures necessitate the development of new strategies for facile and efficient environmental removal and remediation. Recent progress in the development of fluorine-containing compounds as molecular imaging and therapeutic agents will be reviewed and their design features contrasted with environmental and health risks for PFAS systems. Finally, present challenges and future directions in the exploitation of the biological aspects of fluorinated systems will be described.
Collapse
Affiliation(s)
- Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| | - Kai Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Green Chemicals and Functional Materials, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hui Peng
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
- Materials Department, University of California, Santa Barbara, California 93106, United States
- Department of Chemistry & Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Andrew K Whittaker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
12
|
Bosio GN, Mártire DO. Carbon nitride nanomaterials with application in photothermal and photodynamic therapies. Photodiagnosis Photodyn Ther 2021; 37:102683. [PMID: 34915184 DOI: 10.1016/j.pdpdt.2021.102683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022]
Abstract
Phototherapies offer treatment of tumors with high spatial selectivity. Photodynamic therapy (PDT) consists in the administration of a photosensitizer (PS) followed by local photoirradiation with light of specific wavelength. The excited states of the PS interact with biomolecules and molecular oxygen producing reactive oxygen species (ROS), which initiate cell death. Photothermal therapy (PTT) employs photothermal agents to harvest the energy from light and convert it into heat to produce a temperature increase of the surrounding environment leading to cell death. Due to their good biocompatibility and unique photophysical properties, carbon-based materials are suitable for application in PDT and PTT. In particular, graphitic carbon nitride (g-C3N4), is a low-cost, non-toxic, and environment-friendly material, which is currently being used in the development of new nanomaterials with application in PDT and PTT. This brief review includes recent advances in the development of g-C3N4-based nanomaterials specifically designed for achieving red-shifted band gaps with the aim of generating oxygen molecules via water splitting upon red light or NIR irradiation to tackle the hypoxic condition of the tumor area. Nanomaterials designed for theranostics, combining medical imaging applications with PDT and/or PTT treatments are also included. The recent developments of g-C3N4-nanomaterials containing lanthanide-based upconversion nanoparticles are also covered. Finally, g-C3N4-based nanomaterials employed in microwave induced photodynamic therapy, sonodynamic therapy, and magnetic hyperthermia are considered.
Collapse
Affiliation(s)
- Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina.
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de la Plata, CONICET, Casilla de Correo 16, Sucursal 4, La Plata 1900, Argentina.
| |
Collapse
|
13
|
Zheng Y, Ye J, Li Z, Chen H, Gao Y. Recent progress in sono-photodynamic cancer therapy: From developed new sensitizers to nanotechnology-based efficacy-enhancing strategies. Acta Pharm Sin B 2021; 11:2197-2219. [PMID: 34522584 PMCID: PMC8424231 DOI: 10.1016/j.apsb.2020.12.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/27/2020] [Accepted: 11/13/2020] [Indexed: 12/17/2022] Open
Abstract
Many sensitizers have not only photodynamic effects, but also sonodynamic effects. Therefore, the combination of sonodynamic therapy (SDT) and photodynamic therapy (PDT) using sensitizers for sono-photodynamic therapy (SPDT) provides alternative opportunities for clinical cancer therapy. Although significant advances have been made in synthesizing new sensitizers for SPDT, few of them are successfully applied in clinical settings. The anti-tumor effects of the sensitizers are restricted by the lack of tumor-targeting specificity, incapability in deep intratumoral delivery, and the deteriorating tumor microenvironment. The application of nanotechnology-based drug delivery systems (NDDSs) can solve the above shortcomings, thereby improving the SPDT efficacy. This review summarizes various sensitizers as sono/photosensitizers that can be further used in SPDT, and describes different strategies for enhancing tumor treatment by NDDSs, such as overcoming biological barriers, improving tumor-targeted delivery and intratumoral delivery, providing stimuli-responsive controlled-release characteristics, stimulating anti-tumor immunity, increasing oxygen supply, employing different therapeutic modalities, and combining diagnosis and treatment. The challenges and prospects for further development of intelligent sensitizers and translational NDDSs for SPDT are also discussed.
Collapse
Affiliation(s)
- Yilin Zheng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jinxiang Ye
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Ziying Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Haijun Chen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, Fuzhou University, Fuzhou 350116, China
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
14
|
Kaur N, Mathur P, Yadav P, Chakraborty S, Shanavas A. Glycol chitosan in situ coating on PLGA nanoparticle curtails extraneous paclitaxel precipitates and imparts protein corona independent hemocompatibility. Carbohydr Polym 2020; 237:116170. [PMID: 32241417 DOI: 10.1016/j.carbpol.2020.116170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 01/04/2023]
Abstract
Poly (lactide-co-glycolide) (PLGA) nanoparticles surface functionalized with water soluble glycol chitosan (GC) and carboxymethyl chitosan (CMC) has been studied for their drug (Paclitaxel and Doxorubicin) loading, yield, cellular uptake, serum protein adsorption and hemocompatibility. It was observed that Paclitaxel (Ptxl) phase out as Extraneous Ptxl Precipitates (EPP) (>25 %) in case of uncoated and CMC coated low molecular weight (LMW) PLGA nanoparticles (PNPs). The EPP formation was significantly reduced to ∼5 % with GC coating as it enhanced LMW PLGA precipitation and yield predominantly spherical polymeric nanoparticles towards better encapsulation of Ptxl and thus uniform intracellular drug distribution. Interestingly, protein corona analysis showed cmcPNPs and gcPNPs to be distinct from each other in associating mainly with serum proteins of molecular weight < 30 kDa and >30 kDa respectively. While CMC functionalization showed >10 % hemolysis, at similar concentration GC coating was found to provide superior hemocompatibility even in the absence of protein corona.
Collapse
Affiliation(s)
- Navneet Kaur
- Inorganic & Organic Nanomedicine Lab, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab, 160062, India
| | - Purvi Mathur
- Inorganic & Organic Nanomedicine Lab, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab, 160062, India
| | - Pranjali Yadav
- Inorganic & Organic Nanomedicine Lab, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab, 160062, India
| | - Swaroop Chakraborty
- Inorganic & Organic Nanomedicine Lab, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab, 160062, India
| | - Asifkhan Shanavas
- Inorganic & Organic Nanomedicine Lab, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Mohali, Punjab, 160062, India.
| |
Collapse
|