1
|
Yuan Z, Huang L, Liu Y, Sun Y, Wang G, Li X, Lercher JA, Zhang Z. Synergy of Oxygen Vacancies and Base Sites for Transfer Hydrogenation of Nitroarenes on Ceria Nanorods. Angew Chem Int Ed Engl 2024; 63:e202317339. [PMID: 38085966 DOI: 10.1002/anie.202317339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 01/18/2024]
Abstract
CeO2 nanorod based catalysts for the base-free synthesis of azoxy-aromatics via transfer hydrogenation of nitroarenes with ethanol as hydrogen donor have been synthesized and investigated. The oxygen vacancies (Ov ) and base sites are critical for their excellent catalytic properties. The Ov , i.e., undercoordinated Ce cations, serve as the sites to activate ethanol and nitroarenes by lowering the energy barrier to transfer hydrogen from α-Csp3 -H in ethanol to the nitro group coupling it to the redox reactions between Ce3+ and Ce4+ . At the same time, the base sites catalyze the condensation step to selectively produce azoxy-aromatics. The catalytic route opens a much improved way to use non-noble metal oxides without additives for the selective functional group reduction and coupling reactions.
Collapse
Affiliation(s)
- Ziliang Yuan
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education &, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Science, South-Central Minzu University, 430081, Wuhan, P. R. China
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering &, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, 430081, Wuhan, P. R. China
| | - Liang Huang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering &, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, 430081, Wuhan, P. R. China
| | - Yuanshuai Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, (P. R. China)
| | - Yong Sun
- Xiamen Key Laboratory of Clean and High-valued Utilization for Biomass, College of Energy, Xiamen University, 361102, Xiamen, P. R. China
| | - Guanghui Wang
- Hubei Key Laboratory of Coal Conversion and New Carbon Material, School of Chemistry and Chemical Engineering &, The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, 430081, Wuhan, P. R. China
| | - Xun Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education &, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Science, South-Central Minzu University, 430081, Wuhan, P. R. China
| | - Johannes A Lercher
- Department of Chemistry and Catalysis Research Center, Technische Universität München, 85747, Garching, Germany
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, 99352, Richland, WA, USA
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education &, Hubei Key Laboratory of Catalysis and Materials Science, College of Chemistry and Material Science, South-Central Minzu University, 430081, Wuhan, P. R. China
| |
Collapse
|
2
|
Wu Y, Zhu X, Du S, Huang G, Zhou B, Lu Y, Li Y, Jiang SP, Tao L, Wang S. Promoted hydrogen and acetaldehyde production from alcohol dehydrogenation enabled by electrochemical hydrogen pumps. Proc Natl Acad Sci U S A 2023; 120:e2300625120. [PMID: 37364101 PMCID: PMC10319020 DOI: 10.1073/pnas.2300625120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
The dehydrogenation reaction of bioderived ethanol is of particular interest for the synthesis of fuels and value-added chemicals. However, this reaction historically suffered from high energy consumption (>260 °C or >0.8 V) and low efficiency. Herein, the efficient conversion of alcohol to hydrogen and aldehyde is achieved by integrating the thermal dehydrogenation reaction with electrochemical hydrogen transfer at low temperature (120 °C) and low voltage (0.06 V), utilizing a bifunctional catalyst (Ru/C) with both thermal-catalytic and electrocatalytic activities. Specifically, the coupled electrochemical hydrogen separation procedure can serve as electrochemical hydrogen pumps, which effectively promote the equilibrium of ethanol dehydrogenation toward hydrogen and acetaldehyde production and simultaneously purifies hydrogen at the cathode. By utilizing this strategy, we achieved boosted hydrogen and acetaldehyde yields of 1,020 mmol g-1 h-1 and 1,185 mmol g-1 h-1, respectively, which are threefold higher than the exclusive ethanol thermal dehydrogenation. This work opens up a prospective route for the high-efficiency production of hydrogen and acetaldehyde via coupled thermal-electrocatalysis.
Collapse
Affiliation(s)
- Yujie Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha410082, China
| | - Xiaorong Zhu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing210023, China
- School of Chemistry and Chemical Engineering, Nantong University, Nantong226019, China
| | - Shiqian Du
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha410082, China
| | - Gen Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha410082, China
| | - Bo Zhou
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha410082, China
| | - Yuxuan Lu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha410082, China
| | - Yafei Li
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing210023, China
| | - San Ping Jiang
- WA School of Mines: Minerals, Energy & Chemical Engineering, Curtin University, Perth, WA6102, Australia
| | - Li Tao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha410082, China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha410082, China
| |
Collapse
|
3
|
Yan D, Feng R, Qi Y, Bai C. Highly Selective Production of Renewable 1,3-Pentadiene from 1,4-Pentanediol over an Acid–Base (K–Ce/ZrSi) Catalyst by Adjusting the Parallel-Reaction Pathway. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Dongying Yan
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. No. 5625 Renmin Road, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China. No. 96 Jinzhai Road, Hefei 230026, China
| | - Ruilin Feng
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. No. 5625 Renmin Road, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China. No. 96 Jinzhai Road, Hefei 230026, China
| | - Yanlong Qi
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. No. 5625 Renmin Road, Changchun 130022, China
| | - Chenxi Bai
- Key Laboratory of High-Performance Synthetic Rubber and Its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences. No. 5625 Renmin Road, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China. No. 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
4
|
Yao Y, Yu Y, Du C, Wan L, Zhang Y, Chen J, Xiao T, Xie M. Superbases-templated carbons doped with electrochemically active oxygen as advanced supercapacitor electrodes. J Colloid Interface Sci 2023; 630:487-496. [DOI: 10.1016/j.jcis.2022.10.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/21/2022]
|
5
|
MgO/SiO2 prepared by wet-kneading as a catalyst for ethanol conversion to 1,3-butadiene: Prins condensation as the predominant mechanism. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Thermal transformation of copper incorporated hydrotalcite-derived oxides and their catalytic activity for ethanol dehydrogenation. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Texture and morphology-directed activity of magnesia-silica mixed oxide catalysts of ethanol-to-butadiene reaction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Catalytic dehydrogenation of ethanol over zinc-containing zeolites. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Wu R, Wang L. Insight and Activation Energy Surface of the Dehydrogenation of C2HxO Species in Ethanol Oxidation Reaction on Ir(100). Chemphyschem 2022; 23:e202200132. [PMID: 35446461 DOI: 10.1002/cphc.202200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Dehydrogenation of an organic compound is the first and the most fundamental elementary reaction in many organic reactions. In ethanol oxidation reaction (EOR) to form CO 2 , there are a total of 46 pathways in C 2 H x O (x=1-6) species leading to the removal of all six hydrogen atoms in five C-H bonds and one O-H bond. To investigate the degree of dehydrogenation in EOR under operando conditions, we performed density function theory (DFT) calculations to study 28 dehydrogenation steps of C 2 H x O on Ir(100). An activation energy surface was then constructed and compared with that of the C-C bond cleavages to understand the importance of the degree of dehydrogenation in EOR. The results show that there are likely 28 dehydrogenations in EOR under fuel cell temperatures and the last two hydrogens in C 2 H 2 O are less likely cleaved. On the other hand, deep dehydrogenation including 45 dehydrogenations can occur under ethanol steam reforming conditions.
Collapse
Affiliation(s)
- Ruitao Wu
- Southern Illinois University Carbondale, Chemistry and Biochemistry, UNITED STATES
| | - Lichang Wang
- Southern Illinois University Carbondale, Department of Chemistry and Biochemistry, 224 Neckers Hall, 62901, Carbondale, UNITED STATES
| |
Collapse
|
10
|
Wang R, Zhang J, Zhu Y, Chai Z, An Z, Shu X, Song H, Xiang X, He J. Selective Photocatalytic Activation of Ethanol C-H and O-H Bonds over Multi-Au@SiO 2/TiO 2: Role of Catalyst Surface Structure and Reaction Kinetics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2848-2859. [PMID: 34995054 DOI: 10.1021/acsami.1c20514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The chemical bond diversity and flexible reactivity of biomass-derived ethanol make it a vital feedstock for the production of value-added chemicals but result in low conversion selectivity. Herein, composite catalysts comprising SiO2-coated single- or multiparticle Au cores hybridized with TiO2 nanoparticles (mono- or multi-Au@SiO2/TiO2, respectively) were fabricated via electrostatic self-assembly. The C-H and O-H bonds of ethanol were selectively activated (by SiO2 and TiO2, respectively) under irradiation to form CH3CH•(OH) or CH3CH2O• radicals, respectively. The formation and depletion kinetics of these radicals was analyzed by electron spin resonance to reveal marked differences between mono- and multi-Au@SiO2/TiO2. Consequently, the selectivity of these catalysts for 1,1-diethoxyethane after 6 h irradiation was determined as 81 and 99%, respectively, which was attributed to the more pronounced effect of localized surface plasmon resonance for multi-Au@SiO2/TiO2. Notably, only acetaldehyde was formed on a Au/TiO2 catalyst without a SiO2 shell. Fourier transform infrared (FTIR) spectroscopy indicated that the C-H adsorption of ethanol was enhanced in the case of multi-Au@SiO2/TiO2, while NH3 temperature-programmed desorption and pyridine adsorption FTIR spectroscopy revealed that multi-Au@SiO2/TiO2 exhibited enhanced surface acidity. Collectively, the results of experimental and theoretical analyses indicated that the adsorption of acetaldehyde on multi-Au@SiO2/TiO2 was stronger than that on Au/TiO2, which resulted in the oxidative coupling of ethanol to afford 1,1-diethoxyethane on the former and the dehydrogenation of ethanol to acetaldehyde on the latter.
Collapse
Affiliation(s)
- Ruirui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Jian Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Yanru Zhu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Zhigang Chai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Zhe An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Xin Shu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Hongyan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Xu Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| | - Jing He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beishanhuan Donglu, Beijing 100029, People's Republic of China
| |
Collapse
|
11
|
Kyriienko PI, Larina OV, Balakin DY, Vorokhta M, Khalakhan I, Sergiienko SA, Soloviev SO, Orlyk SM. The effect of lanthanum in Cu/La(-Zr)-Si oxide catalysts for aqueous ethanol conversion into 1,3-butadiene. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Kaithal A, Chatterjee B, Werlé C, Leitner W. Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts. Angew Chem Int Ed Engl 2021; 60:26500-26505. [PMID: 34596302 PMCID: PMC9299216 DOI: 10.1002/anie.202110910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Indexed: 12/16/2022]
Abstract
The acceptorless dehydrogenation of methanol to carbon monoxide and hydrogen was investigated using homogeneous molecular complexes. Complexes of ruthenium and manganese comprising the MACHO ligand framework showed promising activities for this reaction. The molecular ruthenium complex [RuH(CO)(BH4 )(HN(C2 H4 PPh2 )2 )] (Ru-MACHO-BH) achieved up to 3150 turnovers for carbon monoxide and 9230 turnovers for hydrogen formation at 150 °C reaching pressures up to 12 bar when the decomposition was carried out in a closed vessel. Control experiments affirmed that the metal complex mediates the initial fast dehydrogenation of methanol to formaldehyde and methyl formate followed by subsequent slow decarbonylation. Depending on the catalyst and reaction conditions, the CO/H2 ratio in the gas mixture thus varies over a broad range from almost pure hydrogen to the stoichiometric limit of 1:2.
Collapse
Affiliation(s)
- Akash Kaithal
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
- Ruhr University BochumUniversitätsstr. 15044801BochumGermany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy ConversionStiftstraße 34–3645470Mülheim a.d. RuhrGermany
- Institut für Technische und Makromolekulare ChemieRWTH Aachen UniversityWorringer Weg 252074AachenGermany
| |
Collapse
|
13
|
Kaithal A, Chatterjee B, Werlé C, Leitner W. Acceptorless Dehydrogenation of Methanol to Carbon Monoxide and Hydrogen using Molecular Catalysts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Akash Kaithal
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
| | - Basujit Chatterjee
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
| | - Christophe Werlé
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
- Ruhr University Bochum Universitätsstr. 150 44801 Bochum Germany
| | - Walter Leitner
- Max Planck Institute for Chemical Energy Conversion Stiftstraße 34–36 45470 Mülheim a.d. Ruhr Germany
- Institut für Technische und Makromolekulare Chemie RWTH Aachen University Worringer Weg 2 52074 Aachen Germany
| |
Collapse
|
14
|
Limlamthong M, Lee M, Jongsomjit B, Ogino I, Pang S, Choi J, Yip AC. Solution-mediated transformation of natural zeolite to ANA and CAN topological structures with altered active sites for ethanol conversion. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Guo J, Feng Z, Xu J, Zhu J, Zhang G, Du Y, Zhang H, Yan C. Facile Preparation of Methyl Phenols from Ethanol over Lamellar Ce(OH)SO 4· xH 2O. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jinqiu Guo
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Zongjing Feng
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Jun Xu
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Jie Zhu
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Guanghui Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Yaping Du
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Hongbo Zhang
- School of Materials Science and Engineering and National Institute for Advanced Materials, Tianjin Key Laboratory for Rare Earth Materials and Applications, Nankai University, Tianjin 300350, China
| | - Chunhua Yan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Chung SH, Ramirez A, Shoinkhorova T, Mukhambetov I, Abou-Hamad E, Telalovic S, Gascon J, Ruiz-Martínez J. The Importance of Thermal Treatment on Wet-Kneaded Silica-Magnesia Catalyst and Lebedev Ethanol-to-Butadiene Process. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:579. [PMID: 33652611 PMCID: PMC7996789 DOI: 10.3390/nano11030579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 11/16/2022]
Abstract
The Lebedev process, in which ethanol is catalytically converted into 1,3-butadiene, is an alternative process for the production of this commodity chemical. Silica-magnesia (SiO2-MgO) is a benchmark catalyst for the Lebedev process. Among the different preparation methods, the SiO2-MgO catalysts prepared by wet-kneading typically perform best owing to the surface magnesium silicates formed during wet-kneading. Although the thermal treatment is of pivotal importance as a last step in the catalyst preparation, the effect of the calcination temperature of the wet-kneaded SiO2-MgO on the Lebedev process has not been clarified yet. Here, we prepared and characterized in detail a series of wet-kneaded SiO2-MgO catalysts using varying calcination temperatures. We find that the thermal treatment largely influences the type of magnesium silicates, which have different catalytic properties. Our results suggest that the structurally ill-defined amorphous magnesium silicates and lizardite are responsible for the production of ethylene. Further, we argue that forsterite, which has been conventionally considered detrimental for the formation of ethylene, favors the formation of butadiene, especially when combined with stevensite.
Collapse
Affiliation(s)
- Sang-Ho Chung
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Catalysis, Nanomaterials, and Spectroscopy (CNS), Thuwal 23955, Saudi Arabia;
| | - Adrian Ramirez
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Advanced Catalytic Materials (ACM), Thuwal 23955, Saudi Arabia; (A.R.); (T.S.); (S.T.); (J.G.)
| | - Tuiana Shoinkhorova
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Advanced Catalytic Materials (ACM), Thuwal 23955, Saudi Arabia; (A.R.); (T.S.); (S.T.); (J.G.)
| | - Ildar Mukhambetov
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Catalysis, Nanomaterials, and Spectroscopy (CNS), Thuwal 23955, Saudi Arabia;
| | - Edy Abou-Hamad
- KAUST Core Labs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;
| | - Selevedin Telalovic
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Advanced Catalytic Materials (ACM), Thuwal 23955, Saudi Arabia; (A.R.); (T.S.); (S.T.); (J.G.)
| | - Jorge Gascon
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Advanced Catalytic Materials (ACM), Thuwal 23955, Saudi Arabia; (A.R.); (T.S.); (S.T.); (J.G.)
| | - Javier Ruiz-Martínez
- KAUST Catalysis Center, King Abdullah University of Science and Technology, Catalysis, Nanomaterials, and Spectroscopy (CNS), Thuwal 23955, Saudi Arabia;
| |
Collapse
|
17
|
Huang Y, Wang B, Yuan H, Sun Y, Yang D, Cui X, Shi F. The catalytic dehydrogenation of ethanol by heterogeneous catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02479a] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, recent advances in the catalytic dehydrogenation of ethanol to acetaldehytde with the release of hydrogen catalyzed by a heterogeneous catalyst aresummerized and discussed.
Collapse
Affiliation(s)
- Yongji Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hangkong Yuan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yubin Sun
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Dongyuan Yang
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
18
|
Boje A, Taifan WE, Ström H, Bučko T, Baltrusaitis J, Hellman A. First-principles-informed energy span and microkinetic analysis of ethanol catalytic conversion to 1,3-butadiene on MgO. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00419k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
First-principles-informed models elucidate the impact of energetic and kinetic limitations on selectivity and activity of ethanol conversion to 1,3-butadiene.
Collapse
Affiliation(s)
- Astrid Boje
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - William E. Taifan
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Henrik Ström
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Tomáš Bučko
- Department of Physical and Theoretical Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, SK-84215, Bratislava, Slovak Republic
- Institute of Inorganic Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-84236 Bratislava, Slovak Republic
| | - Jonas Baltrusaitis
- Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015, USA
| | - Anders Hellman
- Department of Physics, Chalmers University of Technology, 412 96 Göteborg, Sweden
- Competence Centre for Catalysis, Chalmers University of Technology, 412 96 Göteborg, Sweden
| |
Collapse
|
19
|
Kyriienko PI, Larina OV, Soloviev SO, Orlyk SM. Catalytic Conversion of Ethanol Into 1,3-Butadiene: Achievements and Prospects: A Review. THEOR EXP CHEM+ 2020. [DOI: 10.1007/s11237-020-09654-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Studies on the Binary MgO/SiO2 Mixed Oxide Catalysts for the Conversion of Ethanol to 1,3-Butadiene. Catalysts 2020. [DOI: 10.3390/catal10080854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The demand for 1,3-butadiene, one of the most important raw materials in the rubber industry, is constantly increasing. The Lebedev process is a classical method of producing 1,3-butadiene from ethanol, which is to be optimized with regard to the mixed oxide catalysts used. In this work, the binary MgO/SiO2 solid system was tested with regard to its optimum chemical composition for the catalytic conversion of ethanol to 1,3-butadiene. Furthermore, novel mesoporous mixed oxides were prepared to investigate their textural, structural, and surface chemical properties as well as the catalytic activity. Nitrogen physisorption, scanning electron microscopy (SEM), and temperature-programmed ammonia desorption (NH3-TPD) measurements were carried out and evaluated. It was shown that the optimum yield of 1,3-butadiene is achieved by using MgO/SiO2 mixed oxide catalysts with 85–95 mol% MgO and not, as suggested by Lebedev, with 75 mol% MgO. The NH3-TPD measurements revealed that the maximum acid-site density is achieved with an equimolar up to magnesium-rich composition. During the synthesis of binary MgO/SiO2 solid systems based on mesoporous MgO, a thermally stable and ordered structure was formed in the autoclave, depending on the carbonate used and on the duration of the treatment.
Collapse
|