1
|
Murayama H, Huang QA, Yamamoto E, Tokunaga M, Ishida T, Okumura M, Honma T, Fujitani T, Isogai A. Supported Noble Metal Catalysts and Adsorbents with Soft Lewis Acid Functions. CHEM REC 2023; 23:e202300148. [PMID: 37417711 DOI: 10.1002/tcr.202300148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Indexed: 07/08/2023]
Abstract
Heterogeneous noble metal catalysts exhibit various functions. Although their redox functions have been extensively studied, we focused on their soft Lewis acid functions. Supported Au, Pt, and Pd catalysts electrophilically attack the π-electrons of soft bases such as alkynes, alkenes, and aromatic compounds to perform addition and substitution reactions. Hydroamination, intramolecular cyclization of alkynyl carboxylic acids, isomerization of allylic esters, vinyl exchange reactions, Wacker oxidation, and oxidative homocoupling of aromatics are introduced based on a discussion of the active species and reaction mechanisms. Furthermore, the adsorption of sulfur compounds, which are soft bases, onto the supported AuNPs is discussed. The adsorption and removal of 1,3-dimethyltrisulfane (DMTS), which is the compound responsible for the stale odor of "hine-ka" in alcoholic beverages, particularly Japanese sake, is described.
Collapse
Affiliation(s)
- Haruno Murayama
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Qi-An Huang
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eiji Yamamoto
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Makoto Tokunaga
- Department of Chemistry, Graduate School of Science, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tamao Ishida
- Department of Applied Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Mitsutaka Okumura
- Department of Chemistry, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Tadahiro Fujitani
- National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing (NRIB), Higashihiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
2
|
Liu L, Liu Y, Wu Q, Zhao X, Li Y, Chen G, Bi S. Mechanistic Investigation into the Regio-Controllable Hydroallylations of Alkynes with Allylborons under Pd-Based Synergetic Catalyses. J Org Chem 2023; 88:4536-4545. [PMID: 36930045 DOI: 10.1021/acs.joc.3c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Density functional theory calculations were employed to investigate the Pd-catalyzed regio-selective hydroallylations of alkynes with allylborons: cooperation of Cu(OAc)2 and dppe resulting in 1,4-dienes while combination of AdCO2H and PCy3 leading to 1,5-dienes. A unified rationalization mechanism called "Lewis-acid-base-interaction promoted deprotonation/3,3-rearrangement" was proposed. Compared with the commonly reported metathesis pathway to only afford the metal-allyl intermediate, in the newly established mechanism, an additional Brønsted acid (as an initiator of the Pd0 oxidative addition) is generated by the interaction of the allylboron (Lewis acid) B atom with the nBuOH (Lewis base) O atom, and subsequent 3,3-rearrangement ensures the thermodynamic feasibility of the reaction. In addition, it was found that excess Cu(OAc)2 plays two potential roles in the oxidative addition/alkyne insertion: (i) the participation of one AcO- of Cu(OAc)2 ensures a large orbital overlap between the migrating H and Pd atoms, facilitating the formal AcO-H cleavage and (ii) the extra (OAc)2Cu···O(carboxyl) σ-coordination indirectly contributes to the (Me)C≡C(Ph) insertion into the Pd-H bond. Further analysis showed that the origin of the regioselectivity is closely related to the employed phosphorus ligand. These revealed results, which have been overlooked in the previous documents, would aid the development of new related catalytic reactions.
Collapse
Affiliation(s)
- Lingjun Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Yuxia Liu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China.,Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qiao Wu
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yulin Li
- Key Laboratory of Tibetan Medicine Research and Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.,Key Laboratory of Tibetan Medicine Research and Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resources, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining, Qinghai 810001, P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, P. R. China
| |
Collapse
|
3
|
Kong F, Chen S, Chen J, Liu C, Zhu W, Dickie DA, Schinski WL, Zhang S, Ess DH, Gunnoe TB. Cu(II) carboxylate arene C─H functionalization: Tuning for nonradical pathways. SCIENCE ADVANCES 2022; 8:eadd1594. [PMID: 36001664 PMCID: PMC9401614 DOI: 10.1126/sciadv.add1594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
We report carbon-hydrogen acetoxylation of nondirected arenes benzene and toluene, as well as related functionalization with pivalate and 2-ethylhexanoate ester groups, using simple copper(II) [Cu(II)] salts with over 80% yield. By changing the ratio of benzene and Cu(II) salts, 2.4% conversion of benzene can be reached. Combined experimental and computational studies results indicate that the arene carbon-hydrogen functionalization likely occurs by a nonradical Cu(II)-mediated organometallic pathway. The Cu(II) salts used in the reaction can be isolated, recycled, and reused with little change in reactivity. In addition, the Cu(II) salts can be regenerated in situ using oxygen and, after the removal of the generated water, the arene carbon-hydrogen acetoxylation and related esterification reactions can be continued, which leads to a process that enables recycling of Cu(II).
Collapse
Affiliation(s)
- Fanji Kong
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Shusen Chen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - Junqi Chen
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Chang Liu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Weihao Zhu
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Diane A. Dickie
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | | | - Sen Zhang
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Daniel H. Ess
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84604, USA
| | - T. Brent Gunnoe
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
4
|
Tabaru K, Obora Y. Synergic Palladium Catalysis for Aerobic Oxidative Coupling. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazuki Tabaru
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| | - Yasushi Obora
- Kansai University: Kansai Daigaku Department of Chemistry and Materials Engineering 3-3-35 Yamate-cho 564-8680 Suita JAPAN
| |
Collapse
|
5
|
Zhao Y, Zhang L, Li Z, Pu M, Lei M. Theoretical study on the mechanism of C N and C C coupling to form indole catalyzed by Pd(OAc)2. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
6
|
Distinct roles of Ag(I) and Cu(II) as cocatalysts in the intramolecular cyclization of N-methyl-N-phenylanthranilic acid: A theoretical investigation. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Tereniak SJ, Bruns DL, Stahl SS. Pd-Catalyzed Aerobic Oxidative Coupling of Thiophenes: Synergistic Benefits of Phenanthroline Dione and a Cu Cocatalyst. J Am Chem Soc 2020; 142:10.1021/jacs.0c09962. [PMID: 33155814 PMCID: PMC8099933 DOI: 10.1021/jacs.0c09962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Substituted bithiophenes are prominent fragments in functional organic materials, and they are ideally prepared via direct oxidative C-H/C-H coupling. Here, we report a novel PdII catalyst system, employing 1,10-phenanthroline-5,6-dione (phd) as the ancillary ligand, that enables aerobic oxidative homocoupling of 2-bromothiophenes and other related heterocycles. These observations represent the first use of phd to support Pd-catalyzed aerobic oxidation. The reaction also benefits from a Cu(OAc)2 cocatalyst, and mechanistic studies show that Cu promotes C-C coupling, implicating a role for CuII different from its conventional contribution to reoxidation of the Pd catalyst.
Collapse
Affiliation(s)
| | | | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53706, United States
| |
Collapse
|