1
|
Yang K, Huang Y, Amanze C, Yao L, Anaman R, Huang B, Zeng W. Computer-Aided Flexible Loops Engineering of Glutamate Dehydrogenase for Asymmetric Synthesis of Chiral Pesticides l-phosphinothricin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24643-24654. [PMID: 39436023 DOI: 10.1021/acs.jafc.4c06294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
The access to the enantiopure noncanonical amino acid l-phosphinothricin (l-PPT) by applying biocatalysts is highly appealing in organic chemistry. In this study, a NADH-dependent glutamate dehydrogenase from Lachnospiraceae bacterium (LbGluDH) was chosen for the asymmetric synthesis of l-PPT. Three flexible loops undergoing big conformational shifts during the catalysis were identified and rationally engineered following the initial mutagenesis. The enzyme's specific activity toward the key precursor of l-PPT, 2-oxo-4-[(hydroxy) (methyl) phosphinyl] butyric acid (PPO), was improved from negligible to 9 U/mg, and the Km value was reduced to 17 mM. The computational analysis showed that the modified loops broadened the enzyme's narrow tunnels, allowing the substrate to access the binding pocket and get closer to the crucial residue D165, thereby enhancing the catalytic process. Utilizing the variant as the catalyst, the preparation of l-PPT achieved a 100% conversion rate within 60 min, coupled with a stereoselectivity exceeding 99.9%, demonstrating its practical capacity for industrial application. Similar enhancement in catalytic activity was obtained applying the same strategy to a typical NADH-dependent GluDH from Pyrobaculum islandicum (PisGluDH), indicating the effectiveness of our strategy for the protein engineering of GluDHs targeted to the biosynthesis of unnatural compounds.
Collapse
Affiliation(s)
- Kai Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Yueshan Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Charles Amanze
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Liyi Yao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Richmond Anaman
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Bin Huang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Weimin Zeng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
2
|
Niu J, Ma B, Shen J, Chi H, Zhou H, Lu Z, Lu F, Zhu P. Structure-Guided Steric Hindrance Engineering of Devosia Strain A6-243 Quinone-Dependent Dehydrogenase to Enhance Its Catalytic Efficiency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:549-558. [PMID: 38153089 DOI: 10.1021/acs.jafc.3c07179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Deoxynivalenol (DON), the most widely distributed mycotoxin worldwide, causes severe health risks for humans and animals. Quinone-dependent dehydrogenase derived from Devosia strain A6-243 (DADH) can degrade DON into less toxic 3-keto-DON and then aldo-keto reductase AKR13B3 can reduce 3-keto-DON into relatively nontoxic 3-epi-DON. However, the poor catalytic efficiency of DADH made it unsuitable for practical applications, and it has become the rate-limiting step of the two-step enzymatic cascade catalysis. Here, structure-guided steric hindrance engineering was employed to enhance the catalytic efficiency of DADH. After the steric hindrance engineering, the best mutant, V429G/N431V/T432V/L434V/F537A (M5-1), showed an 18.17-fold increase in specific activity and an 11.04-fold increase in catalytic efficiency (kcat/Km) compared with that of wild-type DADH. Structure-based computational analysis provided information on the increased catalytic efficiency in the directions that attenuated steric hindrance, which was attributed to the reshaped substrate-binding pocket with an expanded catalytic binding cavity and a favorable attack distance. Tunnel analysis suggested that reshaping the active cavity by mutation might alter the shape and size of the enzyme tunnels or form one new enzyme tunnel, which might contribute to the improved catalytic efficiency of M5-1. These findings provide a promising strategy to enhance the catalytic efficiency by steric hindrance engineering.
Collapse
Affiliation(s)
- Jiafeng Niu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Shen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huibing Chi
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Huimin Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Li L, Sun S, Wang M, Xiang J, Shao Y, Wu G, Zhou J, khan U, Xin Z. Improving the hydrolysis and acyltransferase activity of bifunctional feruloyl esterases DLFae4 by multiple rational predictions and directed evolution. FOOD BIOSCI 2023; 56:103140. [DOI: 10.1016/j.fbio.2023.103140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
|
4
|
Wu T, Wang Y, Zhang N, Yin D, Xu Y, Nie Y, Mu X. Reshaping Substrate-Binding Pocket of Leucine Dehydrogenase for Bidirectionally Accessing Structurally Diverse Substrates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| | - Yinmiao Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Ningxin Zhang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Dejing Yin
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian223800, China
| |
Collapse
|
5
|
Su C, Gong JS, Qin A, Li H, Li H, Qin J, Qian JY, Xu ZH, Shi JS. A combination of bioinformatics analysis and rational design strategies to enhance keratinase thermostability for efficient biodegradation of feathers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151824. [PMID: 34808176 DOI: 10.1016/j.scitotenv.2021.151824] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Keratinase has shown great significance and application potentials in the biodegradation and recycle of keratin waste due to its unique and efficient hydrolysis ability. However, the inherent instability of the enzyme limits its practical utilization. Herein, we obtained a thermostability-enhanced keratinase based on a combination of bioinformatics analysis and rational design strategies for the efficient biodegradation of feathers. A systematical in silico analysis combined with filtering of virtual libraries derived a smart library for experimental validation. Synergistic mutations around the highly flexible loop, the calcium binding site and the non-consensus amino acids generated a dominant mutant which increased the optimal temperature of keratinase from 40 °C to 60 °C, and the half-life at 60 °C was increased from 17.3 min to 66.1 min. The mutant could achieve more than 66% biodegradation of 50 g/L feathers to high-valued keratin product with a major molecular weight of 36 kDa. Collectively, this work provided a promising keratinase variant with enhanced thermostability for efficient conversion of keratin wastes to valuable products. It also generated a general strategy to facilitate enzyme thermostability design which is more targeted and predictable.
Collapse
Affiliation(s)
- Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| | - Anqi Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Jiufu Qin
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, PR China
| | - Jian-Ying Qian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
6
|
Mu X, Wu T, Mao Y, Zhao Y, Xu Y, Nie Y. Iterative Alanine Scanning Mutagenesis Confers Aromatic Ketone Specificity and Activity of L‐Amine Dehydrogenases. ChemCatChem 2021. [DOI: 10.1002/cctc.202101558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology School of Biotechnology Jiangnan University 214122 Wuxi P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University 214122 Wuxi P. R. China
- Suqian Jiangnan University Institute of Industrial Technology 223800 Suqian P. R. China
| | - Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology School of Biotechnology Jiangnan University 214122 Wuxi P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University 214122 Wuxi P. R. China
- Suqian Jiangnan University Institute of Industrial Technology 223800 Suqian P. R. China
| | - Yong Mao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences Department of Bioinformatics and Biostatistics School of Life Sciences and Biotechnology Shanghai Jiao Tong University 200240 Shanghai P. R. China
| | - Yilei Zhao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences Department of Bioinformatics and Biostatistics School of Life Sciences and Biotechnology Shanghai Jiao Tong University 200240 Shanghai P. R. China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology School of Biotechnology Jiangnan University 214122 Wuxi P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University 214122 Wuxi P. R. China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology School of Biotechnology Jiangnan University 214122 Wuxi P. R. China
- Key Laboratory of Industrial Biotechnology Ministry of Education School of Biotechnology Jiangnan University 214122 Wuxi P. R. China
| |
Collapse
|
7
|
Wu T, Mu X, Xue Y, Xu Y, Nie Y. Structure-guided steric hindrance engineering of Bacillus badius phenylalanine dehydrogenase for efficient L-homophenylalanine synthesis. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:207. [PMID: 34689801 PMCID: PMC8543943 DOI: 10.1186/s13068-021-02055-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Direct reductive amination of prochiral 2-oxo-4-phenylbutyric acid (2-OPBA) catalyzed by phenylalanine dehydrogenase (PheDH) is highly attractive in the synthesis of the pharmaceutical chiral building block L-homophenylalanine (L-HPA) given that its sole expense is ammonia and that water is the only byproduct. Current issues in this field include a poor catalytic efficiency and a low substrate loading. RESULTS In this study, we report a structure-guided steric hindrance engineering of PheDH from Bacillus badius to create an enhanced biocatalyst for efficient L-HPA synthesis. Mutagenesis libraries based on molecular docking, double-proximity filtering, and a degenerate codon significantly increased catalytic efficiency. Seven superior mutants were acquired, and the optimal triple-site mutant, V309G/L306V/V144G, showed a 12.7-fold higher kcat value, and accordingly a 12.9-fold higher kcat/Km value, than that of the wild type. A paired reaction system comprising V309G/L306V/V144G and glucose dehydrogenase converted 1.08 M 2-OPBA to L-HPA in 210 min, and the specific space-time conversion was 30.9 mmol g-1 L-1 h-1. The substrate loading and specific space-time conversion are the highest values to date. Docking simulation revealed increases in substrate-binding volume and additional degrees of freedom of the substrate 2-OPBA in the pocket. Tunnel analysis suggested the formation of new enzyme tunnels and the expansion of existing ones. CONCLUSIONS Overall, the results show that the mutant V309G/L306V/V144G has the potential for the industrial synthesis of L-HPA. The modified steric hindrance engineering approach can be a valuable addition to the current enzyme engineering toolbox.
Collapse
Affiliation(s)
- Tao Wu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China
| | - Xiaoqing Mu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Suqian Jiangnan University Institute of Industrial Technology, Suqian, 223800, China.
| | - Yuyan Xue
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
8
|
Hu H, Wang Q, Wang D, Ao Y. Modification of the Enantioselectivity of Biocatalytic
meso
‐Desymmetrization for Synthesis of Both Enantiomers of
cis
‐1,2‐Disubstituted Cyclohexane by Amidase Engineering. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hui‐Juan Hu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 People's Republic of China
- State Key Laboratory of NBC Protection for Civilian Beijing 102205 People's Republic of China
| | - Qi‐Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - De‐Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yu‐Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry Chinese Academy of Sciences Beijing 100190 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
9
|
Li YJ, Zheng YC, Geng Q, Liu F, Zhang ZJ, Xu JH, Yu HL. Secretory expression of cyclohexanone monooxygenase by methylotrophic yeast for efficient omeprazole sulfide bio-oxidation. BIORESOUR BIOPROCESS 2021; 8:81. [PMID: 38650277 PMCID: PMC10992682 DOI: 10.1186/s40643-021-00430-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
Prochiral pyrmetazole can be asymmetrically oxidized into (S)-omeprazole, a proton pump inhibitor that is used to treat gastroesophageal reflux, by an engineered cyclohexanone monooxygenase (CHMOAcineto-Mut) that has high stereoselectivity. CHMOAcineto-Mut is produced by heterologous expression in Escherichia coli, where it is expressed intracellularly. Thus, isolating this useful biocatalyst requires tedious cell disruption and subsequent purification, which hinders its use for industrial purposes. Here, we report the extracellular production of CHMOAcineto-Mut by a methylotrophic yeast, Pichia pastoris, for the first time. The recombinant CHMOAcineto-Mut expressed by P. pastoris showed a higher flavin occupation rate than that produced by E. coli, and this was accompanied by a 3.2-fold increase in catalytic efficiency. At a cell density of 150 g/L cell dry weight, we achieved a recombinant CHMOAcineto-Mut production rate of 1,700 U/L, representing approximately 85% of the total protein secreted into the fermentation broth. By directly employing the pH adjusted supernatant as a biocatalyst, we were able to almost completely transform 10 g/L of pyrmetazole into the corresponding (S)-sulfoxide, with > 99% enantiomeric excess.
Collapse
Affiliation(s)
- Ya-Jing Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qiang Geng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
10
|
Hu HJ, Wang QQ, Wang DX, Ao YF. Enantioselective biocatalytic desymmetrization for synthesis of enantiopure cis-3,4-disubstituted pyrrolidines. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Wu L, Qin L, Nie Y, Xu Y, Zhao YL. Computer-aided understanding and engineering of enzymatic selectivity. Biotechnol Adv 2021; 54:107793. [PMID: 34217814 DOI: 10.1016/j.biotechadv.2021.107793] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 12/26/2022]
Abstract
Enzymes offering chemo-, regio-, and stereoselectivity enable the asymmetric synthesis of high-value chiral molecules. Unfortunately, the drawback that naturally occurring enzymes are often inefficient or have undesired selectivity toward non-native substrates hinders the broadening of biocatalytic applications. To match the demands of specific selectivity in asymmetric synthesis, biochemists have implemented various computer-aided strategies in understanding and engineering enzymatic selectivity, diversifying the available repository of artificial enzymes. Here, given that the entire asymmetric catalytic cycle, involving precise interactions within the active pocket and substrate transport in the enzyme channel, could affect the enzymatic efficiency and selectivity, we presented a comprehensive overview of the computer-aided workflow for enzymatic selectivity. This review includes a mechanistic understanding of enzymatic selectivity based on quantum mechanical calculations, rational design of enzymatic selectivity guided by enzyme-substrate interactions, and enzymatic selectivity regulation via enzyme channel engineering. Finally, we discussed the computational paradigm for designing enzyme selectivity in silico to facilitate the advancement of asymmetric biosynthesis.
Collapse
Affiliation(s)
- Lunjie Wu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Lei Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Suqian Industrial Technology Research Institute of Jiangnan University, Suqian 223814, China.
| | - Yan Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Yi-Lei Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, MOE-LSB & MOE-LSC, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
12
|
Zhan J, Shou C, Zheng Y, Chen Q, Pan J, Li C, Xu J. Discovery and Engineering of Bacterial (−)‐Isopiperitenol Dehydrogenases to Enhance (−)‐Menthol Precursor Biosynthesis. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jing‐Ru Zhan
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Chao Shou
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Yu‐Cong Zheng
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Qi Chen
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing School of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jiang Pan
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing School of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Chun‐Xiu Li
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing School of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| | - Jian‐He Xu
- Laboratory of Biocatalysis and Synthetic Biotechnology State Key Laboratory of Bioreactor Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
- Shanghai Collaborative Innovation Center for Biomanufacturing School of Biotechnology East China University of Science and Technology 130 Meilong Road Shanghai 200237 People's Republic of China
| |
Collapse
|
13
|
Zheng YC, Ding LY, Jia Q, Lin Z, Hong R, Yu HL, Xu JH. A High-Throughput Screening Method for the Directed Evolution of Hydroxynitrile Lyase towards Cyanohydrin Synthesis. Chembiochem 2021; 22:996-1000. [PMID: 33146944 DOI: 10.1002/cbic.202000658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Indexed: 11/10/2022]
Abstract
Chiral cyanohydrins are useful intermediates in the pharmaceutical and agricultural industries. In nature, hydroxynitrile lyases (HNLs) are a kind of elegant tool for enantioselective hydrocyanation of carbonyl compounds. However, currently available methods for demonstrating hydrocyanation are still stalled at precise, but low-throughput, GC or HPLC analyses. Herein, we report a chromogenic high-throughput screening (HTS) method that is feasible for the cyanohydrin synthesis reaction. This method was highly anti-interference and sensitive, and could be used to directly profile the substrate scope of HNLs either in cell-free extract or fermentation clear broth. This HTS method was also validated by generating new variants of PcHNL5 that presented higher catalytic efficiency and stronger acidic tolerance in variant libraries.
Collapse
Affiliation(s)
- Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Liang-Yi Ding
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Qiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Zuming Lin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), Shanghai, 200032, P. R. China
| | - Ran Hong
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry (CAS), Shanghai, 200032, P. R. China.,University of the Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai Collaborative Innovation Centre for Biomanufacturing, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai, 200237, P. R. China
| |
Collapse
|
14
|
Liu G, Tong X, Wang J, Wu B, Chu J, Jian Y, He B. Reshaping the binding pocket of purine nucleoside phosphorylase for improved production of 2-halogenated-2′-deoxyadenosines. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02424d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Semi-rational design and iterative combinatorial mutation of AmPNP with gratifyingly improved activity toward steric impediment of 2-halogenated-2′-deoxyadenosine biosynthesis.
Collapse
Affiliation(s)
- Gaofei Liu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Xin Tong
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Jialing Wang
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211800
- China
| | - Bin Wu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211800
- China
| | - Jianlin Chu
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211800
- China
| | - Yongchan Jian
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211800
- China
| | - Bingfang He
- School of Pharmaceutical Sciences
- Nanjing Tech University
- Nanjing 211800
- China
| |
Collapse
|
15
|
Tragni V, Cotugno P, De Grassi A, Cavalluzzi MM, Mincuzzi A, Lentini G, Sanzani SM, Ippolito A, Pierri CL. Targeting Penicillium expansum GMC Oxidoreductase with High Affinity Small Molecules for Reducing Patulin Production. BIOLOGY 2020; 10:biology10010021. [PMID: 33396459 PMCID: PMC7824139 DOI: 10.3390/biology10010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/22/2020] [Accepted: 12/27/2020] [Indexed: 12/21/2022]
Abstract
Simple Summary With the urgent necessity of potential treatments for limiting mycotoxin production and postharvest fungal rots, we propose a combined in silico/in vitro/in vivo strategy for the rapid and effective identification of bioactive small molecules, chosen among a chemical library hosting approved drugs and phytochemicals, to be used after harvest. The molecular target of our analysis was the GMC oxidoreductase from Penicillium expansum involved in the biosynthesis of patulin, a mycotoxin that can contaminate many foods, especially fruits and fruit-based products. The employed in silico/in vitro/in vivo assays described in our study proved the effectiveness of our strategy and in particular of two small molecules, 6-hydroxycoumarin (structurally related to umbelliferon, an already characterized patulin synthase inhibitor) and meticrane (an already approved drug) in reducing patulin accumulation. Our findings highly recommend the mentioned ligands to be subjected to further analysis for being used in the next future in place of other more toxic compounds, in postharvest treatments based on dipping or drenching methods. Abstract Flavine adenine dinucleotide (FAD) dependent glucose methanol choline oxidoreductase (GMC oxidoreductase) is the terminal key enzyme of the patulin biosynthetic pathway. GMC oxidoreductase catalyzes the oxidative ring closure of (E)-ascladiol to patulin. Currently, no protein involved in the patulin biosynthesis in Penicillium expansum has been experimentally characterized or solved by X-ray diffraction. Consequently, nothing is known about P. expansum GMC oxidoreductase substrate-binding site and mode of action. In the present investigation, a 3D comparative model for P. expansum GMC oxidoreductase has been described. Furthermore, a multistep computational approach was used to identify P. expansum GMC oxidoreductase residues involved in the FAD binding and in substrate recognition. Notably, the obtained 3D comparative model of P. expansum GMC oxidoreductase was used for performing a virtual screening of a chemical/drug library, which allowed to predict new GMC oxidoreductase high affinity ligands to be tested in in vitro/in vivo assays. In vitro assays performed in presence of 6-hydroxycoumarin and meticrane, among the highly affinity predicted binders, confirmed a dose-dependent inhibition (17–81%) of patulin production by 6-hydroxycoumarin (10 µM–1 mM concentration range), whereas the approved drug meticrane inhibited patulin production by 43% already at 10 µM. Furthermore, 6-hydroxycoumarin and meticrane caused a 60 and 41% reduction of patulin production, respectively, in vivo on apples at 100 µg/wound.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (V.T.); (A.M.)
| | - Pietro Cotugno
- Biology Department, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy;
| | - Anna De Grassi
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy;
- BROWSer S.r.l., c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70126 Bari, Italy
| | - Maria Maddalena Cavalluzzi
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy; (M.M.C.); (G.L.)
| | - Annamaria Mincuzzi
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (V.T.); (A.M.)
| | - Giovanni Lentini
- Dipartimento di Farmacia—Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, via Orabona 4, 70125 Bari, Italy; (M.M.C.); (G.L.)
| | - Simona Marianna Sanzani
- CIHEAM Bari, Via Ceglie 9, 70010 Valenzano (BA), Italy
- Correspondence: (S.M.S.); (A.I.); ; (C.L.P.); Tel.: +39-0805443614 (C.L.P.); Fax: +39-0805442770 (C.L.P.)
| | - Antonio Ippolito
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy; (V.T.); (A.M.)
- Correspondence: (S.M.S.); (A.I.); ; (C.L.P.); Tel.: +39-0805443614 (C.L.P.); Fax: +39-0805442770 (C.L.P.)
| | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy;
- BROWSer S.r.l., c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70126 Bari, Italy
- Correspondence: (S.M.S.); (A.I.); ; (C.L.P.); Tel.: +39-0805443614 (C.L.P.); Fax: +39-0805442770 (C.L.P.)
| |
Collapse
|
16
|
Affiliation(s)
- Wen-Biao Wu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, People’s Republic of China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, Shanghai 200032, People’s Republic of China
| |
Collapse
|
17
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2020. [DOI: 10.1039/d0np90022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as sporormielone A from a Sporormiella species.
Collapse
|