1
|
Gunawan D, Zhang J, Li Q, Toe CY, Scott J, Antonietti M, Guo J, Amal R. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404618. [PMID: 38853427 DOI: 10.1002/adma.202404618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Photocatalytic solar hydrogen generation, encompassing both overall water splitting and organic reforming, presents a promising avenue for green hydrogen production. This technology holds the potential for reduced capital costs in comparison to competing methods like photovoltaic-electrocatalysis and photoelectrocatalysis, owing to its simplicity and fewer auxiliary components. However, the current solar-to-hydrogen efficiency of photocatalytic solar hydrogen production has predominantly remained low at ≈1-2% or lower, mainly due to curtailed access to the entire solar spectrum, thus impeding practical application of photocatalytic solar hydrogen production. This review offers an integrated, multidisciplinary perspective on photocatalytic solar hydrogen production. Specifically, the review presents the existing approaches in photocatalyst and system designs aimed at significantly boosting the solar-to-hydrogen efficiency, while also considering factors of cost and scalability of each approach. In-depth discussions extending beyond the efficacy of material and system design strategies are particularly vital to identify potential hurdles in translating photocatalysis research to large-scale applications. Ultimately, this review aims to provide understanding and perspective of feasible pathways for commercializing photocatalytic solar hydrogen production technology, considering both engineering and economic standpoints.
Collapse
Affiliation(s)
- Denny Gunawan
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jiajun Zhang
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Qiyuan Li
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Cui Ying Toe
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Engineering, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jason Scott
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14475, Potsdam, Germany
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Rose Amal
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Pinna M, Zava M, Grande T, Prina V, Monticelli D, Roncoroni G, Rampazzi L, Hildebrand H, Altomare M, Schmuki P, Spanu D, Recchia S. Enhanced Photocatalytic Paracetamol Degradation by NiCu-Modified TiO 2 Nanotubes: Mechanistic Insights and Performance Evaluation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1577. [PMID: 39404304 PMCID: PMC11477857 DOI: 10.3390/nano14191577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024]
Abstract
Anodic TiO2 nanotube arrays decorated with Ni, Cu, and NiCu alloy thin films were investigated for the first time for the photocatalytic degradation of paracetamol in water solution under UV irradiation. Metallic co-catalysts were deposited on TiO2 nanotubes using magnetron sputtering. The influence of the metal layer composition and thickness on the photocatalytic activity was systematically studied. Photocatalytic experiments showed that only Cu-rich co-catalysts provide enhanced paracetamol degradation rates, whereas Ni-modified photocatalysts exhibit no improvement compared with unmodified TiO2. The best-performing material was obtained by sputtering a 20 nm thick film of 1:1 atomic ratio NiCu alloy: this material exhibits a reaction rate more than doubled compared with pristine TiO2, enabling the complete degradation of 10 mg L-1 of paracetamol in 8 h. The superior performance of NiCu-modified systems over pure Cu-based ones is ascribed to a Ni and Cu synergistic effect. Kinetic tests using selective holes and radical scavengers unveiled, unlike prior findings in the literature, that paracetamol undergoes direct oxidation at the photocatalyst surface via valence band holes. Finally, Chemical Oxygen Demand (COD) tests and High-Resolution Mass Spectrometry (HR-MS) analysis were conducted to assess the degree of mineralization and identify intermediates. In contrast with the existing literature, we demonstrated that the mechanistic pathway involves direct oxidation by valence band holes.
Collapse
Affiliation(s)
- Marco Pinna
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy;
| | - Martina Zava
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Tommaso Grande
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Veronica Prina
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Damiano Monticelli
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Gianluca Roncoroni
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Laura Rampazzi
- Department of Human Sciences and Innovation for the Territory, University of Insubria, via Sant’Abbondio 12, 22100 Como, Italy;
| | - Helga Hildebrand
- Department of Materials Science WW4-LKO, Friedrich Alexander University of Erlangen Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany; (H.H.); (P.S.)
| | - Marco Altomare
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands;
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich Alexander University of Erlangen Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany; (H.H.); (P.S.)
- Regional Center of Advanced Technologies and Materials, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy; (M.Z.); (T.G.); (V.P.); (D.M.); (G.R.); (S.R.)
| |
Collapse
|
3
|
Abudukade M, Pinna M, Spanu D, De Amicis G, Minguzzi A, Vertova A, Recchia S, Ghigna P, Mul G, Altomare M. In Situ X-ray Absorption Spectroscopy Study of the Deactivation Mechanism of a Ni-SrTiO 3 Photocatalyst Slurry Active in Water Splitting. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:16020-16031. [PMID: 39355014 PMCID: PMC11440603 DOI: 10.1021/acs.jpcc.4c04688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024]
Abstract
We used in situ X-ray absorption spectroscopy (XAS) to investigate the composition-performance correlation of Ni-SrTiO3 photocatalysts active for water splitting. After preparation and exposure to ambient conditions, the Ni particles on SrTiO3 consist of Ni(0) and Ni(II) phases, with a 4:1 at % ratio, in a metal/oxide core/shell configuration, as confirmed by XPS and TEM-EDX. In situ XAS experiments using an aqueous slurry of the Ni-SrTiO3 photocatalyst and simultaneous continuous exposure to 365 nm light with a power density of 100 mW cm-2 and the X-rays do not reveal significant changes in oxidation state of the Ni particles. Contrarily, when the X-rays are discontinuously applied, UV excitation leads to oxidation of a significant fraction of Ni(0) to Ni(II), specifically to NiO and Ni(OH)2 phases, along with cocatalyst restructuring. Ni dissolution or oxidation to higher valence states (e.g., Ni(III)) was not observed. The UV light-induced oxidation of Ni(0) causes the hydrogen evolution rate to drop to similar rates as observed for pristine SrTiO3, suggesting that Ni(0) is the active phase for H2 generation. Our results underscore the importance of assessing the effects of (continuous) X-ray exposure to (photo)catalyst-containing aqueous slurries during in situ XAS experiments, which can significantly influence the observation of compositional and structural changes in the (photo)catalysts. We ascribe this to X-ray induced water photolysis and formation of free electrons, which in this study quench SrTiO3 photoholes and prevent Ni oxidation.
Collapse
Affiliation(s)
- MemetTursun Abudukade
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Marco Pinna
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como 22100, Italy
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
| | - Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como 22100, Italy
| | - Giuditta De Amicis
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 16, Pavia 27100, Italy
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
- UdR INSTM di Milano - Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
- UdR INSTM di Milano - Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali - INSTM, Via G. Giusti 9, Firenze 50121, Italy
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, Como 22100, Italy
| | - Paolo Ghigna
- Dipartimento di Chimica, Università degli Studi di Pavia, Via Taramelli 16, Pavia 27100, Italy
| | - Guido Mul
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Marco Altomare
- Department of Chemical Engineering, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| |
Collapse
|
4
|
Cai M, Sun S, Bao J. Synchrotron Radiation Based X-ray Absorption Spectroscopy: Fundamentals and Applications in Photocatalysis. Chemphyschem 2024; 25:e202300939. [PMID: 38374799 DOI: 10.1002/cphc.202300939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/19/2024] [Indexed: 02/21/2024]
Abstract
Photocatalysis is one of the most promising green technologies to utilize solar energy for clean energy achievement and environmental governance. There is a knotty problem to rational designing high-performance photocatalyst, which largely depends on an in-depth insight into their structure-activity relationships and complex photocatalytic reaction mechanisms. Synchrotron radiation based X-ray absorption spectroscopy (XAS) is an important characterization method for photocatlayst to offer the element-specific key geometric and electronic structural information at the atomic level, on this basis, time-resolved XAS technique has a huge impact on mechanistic understanding of photochemical reaction owing to their powerful ability to probe, in real-time, the electronic and geometric structures evolution within photocatalysis reactions. This review will focus on the fundamentals of XAS and their applications in photocatalysis. The detailed applications obtained from XAS is described through the following aspects: 1) identifying local structure of photocatalyst; 2) uncovering in situ structure and chemical state evolution during photocatalysis; 3) revealing the photoexcited process. We will provide an in depth understanding on how the XAS method can guide the rational design of highly efficient photocatalyst. Finally, a systematic summary of XAS and related significance is made and the research perspectives are suggested.
Collapse
Affiliation(s)
- Mengdie Cai
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Song Sun
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jun Bao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| |
Collapse
|
5
|
Zhao D, Tang X, Liu P, Huang Q, Li T, Ju L. Recent Progress of Ion-Modified TiO 2 for Enhanced Photocatalytic Hydrogen Production. Molecules 2024; 29:2347. [PMID: 38792207 PMCID: PMC11123945 DOI: 10.3390/molecules29102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Harnessing solar energy to produce hydrogen through semiconductor-mediated photocatalytic water splitting is a promising avenue to address the challenges of energy scarcity and environmental degradation. Ever since Fujishima and Honda's groundbreaking work in photocatalytic water splitting, titanium dioxide (TiO2) has garnered significant interest as a semiconductor photocatalyst, prized for its non-toxicity, affordability, superior photocatalytic activity, and robust chemical stability. Nonetheless, the efficacy of solar energy conversion is hampered by TiO2's wide bandgap and the swift recombination of photogenerated carriers. In pursuit of enhancing TiO2's photocatalytic prowess, a panoply of modification techniques has been explored over recent years. This work provides an extensive review of the strategies employed to augment TiO2's performance in photocatalytic hydrogen production, with a special emphasis on foreign dopant incorporation. Firstly, we delve into metal doping as a key tactic to boost TiO2's capacity for efficient hydrogen generation via water splitting. We elaborate on the premise that metal doping introduces discrete energy states within TiO2's bandgap, thereby elevating its visible light photocatalytic activity. Following that, we evaluate the role of metal nanoparticles in modifying TiO2, hailed as one of the most effective strategies. Metal nanoparticles, serving as both photosensitizers and co-catalysts, display a pronounced affinity for visible light absorption and enhance the segregation and conveyance of photogenerated charge carriers, leading to remarkable photocatalytic outcomes. Furthermore, we consolidate perspectives on the nonmetal doping of TiO2, which tailors the material to harness visible light more efficiently and bolsters the separation and transfer of photogenerated carriers. The incorporation of various anions is summarized for their potential to propel TiO2's photocatalytic capabilities. This review aspires to compile contemporary insights on ion-doped TiO2, propelling the efficacy of photocatalytic hydrogen evolution and anticipating forthcoming advancements. Our work aims to furnish an informative scaffold for crafting advanced TiO2-based photocatalysts tailored for water-splitting applications.
Collapse
Affiliation(s)
- Dongqiu Zhao
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (D.Z.); (Q.H.); (T.L.)
| | - Xiao Tang
- Institute of Materials Physics and Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China;
| | - Penglan Liu
- School of Science and Technology, Beijing Normal University•Hong Kong Baptist University United International College, Zhuhai 519087, China;
| | - Qiao Huang
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (D.Z.); (Q.H.); (T.L.)
| | - Tingxian Li
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (D.Z.); (Q.H.); (T.L.)
| | - Lin Ju
- School of Physics and Electric Engineering, Anyang Normal University, Anyang 455000, China; (D.Z.); (Q.H.); (T.L.)
| |
Collapse
|
6
|
Fazil M, Alshehri SM, Mao Y, Ahmad T. Enhanced Photo/Electrocatalytic Hydrogen Evolution by Hydrothermally Derived Cu-Doped TiO 2 Solid Solution Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4063-4076. [PMID: 38354294 DOI: 10.1021/acs.langmuir.3c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Highly efficient nanocatalysts with a high specific surface area were successfully synthesized by a cost-effective and environmentally friendly hydrothermal method. Structural and elemental purity, size, morphology, specific surface area, and band gap of pristine and 1 to 5% Cu-doped TiO2 nanoparticles were characterized by powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), energy dispersive X-ray analysis (EDAX), inductively coupled plasma mass spectrometry (ICP-MS), liquid chromatography-high resolution mass spectrometry (LC-HRMS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), BET surface area, Raman spectroscopy, photoluminescence spectroscopy (PL) and UV-visible diffused reflectance spectroscopy (UV-DRS) studies. The XPS and EPR findings indicated the successful integration of Cu ions into the TiO2 lattice. UV-DRS and BET surface area investigations revealed that with an increase in dopant concentration, Cu-doped TiO2 NPs show a decrease in band gap (3.19-3.08 eV) and an increase in specific surface area (169.9-188.2 m2/g). Among all compositions, 2.5% Cu-doped TiO2 has shown significant H2 evolution with an apparent quantum yield of 17.67%. Furthermore, the electrochemical water-splitting study shows that 5% Cu-doped TiO2 NPs have superiority over pristine TiO2 for H2 evolution reaction. It was thus revealed that the band gap tuning with the desired dopant concentration led to enhanced photo/electrocatalytic sustainable energy applications.
Collapse
Affiliation(s)
- Mohd Fazil
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Saad M Alshehri
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, Illinois 60616, United States
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
7
|
Altomare M, Qin S, Saveleva VA, Badura Z, Tomanec O, Mazare A, Zoppellaro G, Vertova A, Taglietti A, Minguzzi A, Ghigna P, Schmuki P. Metastable Ni(I)-TiO 2-x Photocatalysts: Self-Amplifying H 2 Evolution from Plain Water without Noble Metal Co-Catalyst and Sacrificial Agent. J Am Chem Soc 2023; 145:26122-26132. [PMID: 37984877 DOI: 10.1021/jacs.3c08199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Decoration of semiconductor photocatalysts with cocatalysts is generally done by a step-by-step assembly process. Here, we describe the self-assembling and self-activating nature of a photocatalytic system that forms under illumination of reduced anatase TiO2 nanoparticles in an aqueous Ni2+ solution. UV illumination creates in situ a Ni+/TiO2/Ti3+ photocatalyst that self-activates and, over time, produces H2 at a higher rate. In situ X-ray absorption spectroscopy and electron paramagnetic resonance spectroscopy show that key to self-assembly and self-activation is the light-induced formation of defects in the semiconductor, which enables the formation of monovalent nickel (Ni+) surface states. Metallic nickel states, i.e., Ni0, do not form under the dark (resting state) or under illumination (active state). Once the catalyst is assembled, the Ni+ surface states act as electron relay for electron transfer to form H2 from water, in the absence of sacrificial species or noble metal cocatalysts.
Collapse
Affiliation(s)
- Marco Altomare
- PhotoCatalytic Synthesis PCS Group, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, Enschede 7500 AE, The Netherlands
| | - Shanshan Qin
- Department Materials Science WW-4, LKO, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen 91058, Germany
| | - Viktoriia A Saveleva
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, Grenoble Cedex 9 38043, France
| | - Zdenek Badura
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, Olomouc 779 00, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Ondrej Tomanec
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| | - Anca Mazare
- Department Materials Science WW-4, LKO, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen 91058, Germany
| | - Giorgio Zoppellaro
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, Olomouc 779 00, Czech Republic
- Nanotechnology Centre, VŠB - Technical University of Ostrava, 17. listopadu 2172/15, Ostrava-Poruba 708 00, Czech Republic
| | - Alberto Vertova
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
| | - Angelo Taglietti
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 13, Pavia 27100, Italy
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, Milan 20133, Italy
| | - Paolo Ghigna
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 13, Pavia 27100, Italy
| | - Patrik Schmuki
- Department Materials Science WW-4, LKO, Friedrich-Alexander-University of Erlangen-Nuremberg (FAU), Erlangen 91058, Germany
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Křížkovského 511/8, Olomouc 779 00, Czech Republic
| |
Collapse
|
8
|
Liu P, Dörfler A, Tabrizi AA, Skokan L, Rawach D, Wang P, Peng Z, Zhang J, Ruediger AP, Claverie JP. In Operando Photoswitching of Cu Oxidation States in Cu-Based Plasmonic Heterogeneous Photocatalysis for Efficient H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37257196 DOI: 10.1021/acsami.3c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Metal nanoparticles (NP) supported on TiO2 are known to be efficient photocatalysts for solar-to-chemical energy conversion. While TiO2 decorated with copper NPs has the potential to become an attractive system, the poor oxidative stability of Cu severely limits its applicability. In this work, we demonstrate that, when Cu NPs supported on TiO2 nanobelts (NBs) are engaged in the photocatalytic generation of H2 from water under light illumination, Cu is not only oxidized in CuO but also dissolved under the form of Cu+/Cu2+ ions, leading to a continuous reconstruction of nanoparticles via Ostwald ripening. By nanoencapsulating the CuOx (Cu/CuO/Cu2O) NPs by a few layers of carbon supported on TiO2 (TC@C), Ostwald ripening can be suppressed. Simultaneously, the resulting CuOx@C NPs are photoreduced under light illumination to generate Cu@C NPs. This photoswitching strategy allows the preparation of a Cu plasmonic photocatalyst with enhanced activity for H2 production. Remarkably, the photocatalyst is even active when illuminated with visible light, indicating a clear plasmonic enhancement of photocatalytic activity from the surface plasmonic resonance (SPR) effect of Cu NPs. Three-dimensional electromagnetic wave-frequency domain (3D-EWFD) simulations were conducted to confirm the SPR enhancement. This advance bodes for the development of scalable multifunctional Cu-based plasmonic photocatalysts for solar energy transfer.
Collapse
Affiliation(s)
- Peipei Liu
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Andreas Dörfler
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Afsaneh Asgariyan Tabrizi
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Lilian Skokan
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Diane Rawach
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Peikui Wang
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
| | - Zhiyuan Peng
- Department of Chemistry and Biochemistry, Université du Québec à Montréal, CP8888, Montréal QC H3C 3P8, Canada
| | - Jianming Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Andreas Peter Ruediger
- Centre Énergie, Matériaux & Télécommunications, Institut National de la Recherche Scientifique, 1650 Boulevard Lionel-Boulet, Varennes, Québec J3X 1S2, Canada
| | - Jerome P Claverie
- Département de Chimie, Université de Sherbrooke, 2500 Blvd de l'Université, Sherbrooke, QC J1K2R1, Canada
| |
Collapse
|
9
|
Directly converting metal organic framework into designable complex architectures with rich co-arranged active species for efficient solar-driven water splitting. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2022.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
TiO2 nanotubes fabricated by electrochemical anodization in molten o-H3PO4-based electrolyte: Properties and applications. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
Issa Hamoud H, Wolski L, Pankin I, Bañares MA, Daturi M, El-Roz M. In situ and Operando Spectroscopies in Photocatalysis: Powerful Techniques for a Better Understanding of the Performance and the Reaction Mechanism. Top Curr Chem (Cham) 2022; 380:37. [PMID: 35951125 DOI: 10.1007/s41061-022-00387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 10/15/2022]
Abstract
In photocatalysis, a set of elemental steps are involved together at different timescales to govern the overall efficiency of the process. These steps are divided as follow: (1) photon absorption and excitation (in femtoseconds), (2) charge separation (femto- to picoseconds), (3) charge carrier diffusion/transport (nano- to microseconds), and (4 and 5) reactant activation/conversion and mass transfer (micro- to milliseconds). The identification and quantification of these steps, using the appropriate tool/technique, can provide the guidelines to emphasize the most influential key parameter that improve the overall efficiency and to develop the "photocatalyst by design" concept. In this review, the identification/quantification of reactant activation/conversion and mass transfer (steps 4 and 5) is discussed in details using the in situ/operando techniques, especially the infrared (IR), Raman, and X-ray absorption spectroscopy (XAS). The use of these techniques in photocatalysis was highlighted by the most recent and conclusive case studies which allow a better characterization of the active site and reveal the reaction pathways in order to establish a structure-performance relationship. In each case study, the reaction conditions and the reactor design for photocatalysis (pressure, temperature, concentration, etc.) were thoroughly discussed. In the last part, some examples in the use of time-resolved techniques (time-resolved FTIR, photoluminescence, and transient absorption) are also presented as an author's guideline to study the elemental steps in photocatalysis at shorter timescale (ps, ns, and µs).
Collapse
Affiliation(s)
- Houeida Issa Hamoud
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Ilia Pankin
- Smart Materials, Research Institute, Southern Federal University, Sladkova Street 174/28, 344090, Rostov-on-Don, Russia
| | - Miguel A Bañares
- Catalytic Spectroscopy Laboratory, Instituto de Catalisis, ICP-CSIC, 28049, Madrid, Spain
| | - Marco Daturi
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Mohamad El-Roz
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France.
| |
Collapse
|
12
|
Khavar AHC, Mahjoub AR, Khazaee Z. MoCu Bimetallic Nanoalloy-Modified Copper Molybdenum Oxide with Strong SPR Properties; a 2D-0D System for Enhanced Degradation of Antibiotics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Ahmad I, Shukrullah S, Naz M, Ahmad M, Ahmed E, Liu Y, Hussain A, Iqbal S, Ullah S. Recent advances and challenges in 2D/2D heterojunction photocatalysts for solar fuels applications. Adv Colloid Interface Sci 2022; 304:102661. [PMID: 35462267 DOI: 10.1016/j.cis.2022.102661] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 12/29/2022]
Abstract
Although photocatalytic technology has emerged as an effective means of alleviating the projected future fuel crisis by converting sunlight directly into chemical energy, no visible-light-driven, low-cost, and highly stable photocatalyst has been developed to date. Due to considerably higher interfacial contact with numerous reactive sites, effective charge transmission and separation ability, and strong redox potentials, the focus has now shifted to 2D/2D heterojunction systems, which have exhibited effective photocatalytic performance. The fundamentals of 2D/2D photocatalysis for different applications and the classification of 2D/2D materials are first explained in this paper, followed by strategies to improve the photocatalytic performance of various 2D/2D heterojunction systems. Following that, current breakthroughs in 2D/2D metal-based and metal-free heterojunction photocatalysts, as well as their applications for H2 evolution via water splitting, CO2 reduction, and N2 fixation, are discussed. Finally, a brief overview of current constraints and predicted results for 2D/2D heterojunction systems is also presented. This paper lays out a strategy for developing efficient 2D/2D heterojunction photocatalysts and sophisticated technology for solar fuel applications in order to address the energy issue.
Collapse
|
14
|
Saruyama M, Pelicano CM, Teranishi T. Bridging electrocatalyst and cocatalyst studies for solar hydrogen production via water splitting. Chem Sci 2022; 13:2824-2840. [PMID: 35382478 PMCID: PMC8905826 DOI: 10.1039/d1sc06015e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Solar-driven water-splitting has been considered as a promising technology for large-scale generation of sustainable energy for succeeding generations. Recent intensive efforts have led to the discovery of advanced multi-element-compound water-splitting electrocatalysts with very small overpotentials in anticipation of their application to solar cell-assisted water electrolysis. Although photocatalytic and photoelectrochemical water-splitting systems are more attractive approaches for scaling up without much technical complexity and high investment costs, improving their efficiencies remains a huge challenge. Hybridizing photocatalysts or photoelectrodes with cocatalysts has been an effective scheme to enhance their overall solar energy conversion efficiencies. However, direct integration of highly-active electrocatalysts as cocatalysts introduces critical factors that require careful consideration. These additional requirements limit the design principle for cocatalysts compared with electrocatalysts, decelerating development of cocatalyst materials. This perspective first summarizes the recent advances in electrocatalyst materials and the effective strategies to assemble cocatalyst/photoactive semiconductor composites, and further discusses the core principles and tools that hold the key in designing advanced cocatalysts and generating a deeper understanding on how to further push the limits of water-splitting efficiency.
Collapse
Affiliation(s)
- Masaki Saruyama
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| | | | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University Gokasho, Uji Kyoto 611-0011 Japan
| |
Collapse
|
15
|
Guo M, Zhang M, Liu R, Zhang X, Li G. State-of-the-Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metal-Organic Framework (MOF)-Based Catalysts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103361. [PMID: 34716687 PMCID: PMC8728825 DOI: 10.1002/advs.202103361] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/22/2021] [Indexed: 05/07/2023]
Abstract
Photocatalytic hydrogenation provides an effective alternative way for the synthesis of industrial chemicals to meet the economic and environment expectations. Especially, over the past few years, metal-organic frameworks (MOFs), featured with tunable structure, porosity, and crystallinity, have been significantly developed as many high-performance catalysts in the field of photocatalysis. In this review, the background and development of photocatalytic hydrogenation are systemically summarized. In particular, the comparison between photocatalysis and thermal catalysis, and the fundamental understanding of photohydrogenation, including reaction pathways, reducing species, regulation of selectivity, and critical parameters of light, are proposed. Moreover, this review highlights the advantages of MOFs-based photocatalysts in the area of photohydrogenation. Typical effective strategies for modifying MOFs-based composites to produce their advantages are concluded. The recent progress in the application of various types of MOFs-based photocatalysts for photohydrogenation of unsaturated organic chemicals and carbon dioxide (CO2 ) is summarized and discussed in detail. Finally, a brief conclusion and personal perspective on current challenges and future developments of photocatalytic hydrogenation processes and MOFs-based photocatalysts are also highlighted.
Collapse
Affiliation(s)
- Mengya Guo
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Mingwei Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Runze Liu
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of EducationSchool of Chemical Engineering and TechnologyTianjin UniversityTianjin300072China
- Collaborative Innovative Center of Chemical Science and Engineering (Tianjin)Tianjin300072China
| |
Collapse
|
16
|
Wang M, Wang P, Long H, Wang X, Chen F, Yu H. Improved H-adsorption ability of Cu of CuNi alloy nanodots toward efficient photocatalytic as H2-evolution activity of TiO2. Dalton Trans 2022; 51:14526-14534. [DOI: 10.1039/d2dt02543d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compared with noble metal Pt, non-noble metal Cu as a cocatalyst exhibits a low hydrogen-evolution activity owing to its weak Cu-H bond (11 kcal mol-1), which inhibits the hydrogen adsorption...
Collapse
|
17
|
Chen X, Sun B, Han Z, Wang Y, Han X, Xu P. Ultrathin tungsten-doped hydrogenated titanium dioxide nanosheets for solar-driven hydrogen evolution. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00978a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ultrathin tungsten-doped hydrogenated TiO2 (W-h-TiO2) nanosheets are highly efficient for photocatalytic hydrogen production by water splitting without a noble metal cocatalyst.
Collapse
Affiliation(s)
- Xiaoyu Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Bojing Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Zhi Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yu Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
18
|
Du T, Zhang G, Zou J. Coupling photocatalytic and electrocatalytic oxidation towards simultaneous removal of humic acid and ammonia-nitrogen in landscape water. CHEMOSPHERE 2022; 286:131717. [PMID: 34418660 DOI: 10.1016/j.chemosphere.2021.131717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/12/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Aiming to bring photocatalytic and electrocatalytic oxidation processes into solving practical issue of organics and ammonia-nitrogen pollution in landscape water that resulting in algae bloom and eutrophication, this work firstly investigates photocatalytic oxidation of humic acid and electrochemical oxidation of ammonia upon optimization of each process parameters, respectively. The platinum modified titania (Pt/TiO2) exhibits improved activity than pure titania and CuOx, MnOx and NiOx modified titania for decomposition of humic acid. As an application-oriented study, this work has developed a simple and effective brushing and annealing method for immobilization of TiO2 and Pt/TiO2 onto ceramic foam for further application. In addition, the RuO2-IrO2/Ti electrode presents the best electrocatalytic activity compared with RuO2/Ti and IrO2/Ti electrodes in terms of ammonia oxidation, and the ammonia conversion pathways have been studied. Lastly, an integrated and enlarged reactor system employing optimized photocatalytic ceramic foam and stable electrodes has been developed for simultaneous oxidation of humic acid and ammonia-nitrogen in water circulated flow condition, based on cooperative production of reactive oxidant species between photocatalysis and electrocatalysis. The results show that coupled photocatalytic and electrocatalytic oxidation is a promising approach for treatment of organic matter and inorganic ammonia nitrogen in landscape water.
Collapse
Affiliation(s)
- Tingting Du
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China
| | - Guan Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen, Shenzhen, 518055, PR China.
| | - Jing Zou
- General Education Division, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, PR China.
| |
Collapse
|
19
|
Abstract
Photocatalytic water splitting for hydrogen production has been widely recognized as a promising strategy for relieving the pressure from energy crisis and environmental pollution. However, current efficiency for photocatalytic hydrogen generation has been limited due to a low separation of photogenerated electrons and holes. p-n heterojunction with a built-in electric field emerges as an efficient strategy for photocatalyst design to boost hydrogen evolution activities due to a spontaneous charge separation. In this work, we investigated the effect of different preparation methods on photocatalytic hydrogen production over NiO-TiO2 composites. The results demonstrated that a uniform distribution of NiO on a surface of TiO2 with an intimate interfacial interaction was formed by a sol-gel method, while direct calcination tended to form aggregation of NiO, thus leading to an uneven p-n heterojunction structure within a photocatalyst. NiO-TiO2 composites fabricated by different methods showed enhanced hydrogen production (23.5 ± 1.2, 20.4 ± 1.0 and 8.8 ± 0.7 mmolh−1g−1 for S1-20%, S2-20% and S3-10%, respectively) as compared with pristine TiO2 (6.6 ± 0.7 mmolh−1g−1) and NiO (2.1 ± 0.2 mmolh−1g−1). The current work demonstrates a good example to improve photocatalytic hydrogen production by finely designing p-n heterojunction photocatalysts.
Collapse
|
20
|
Schubert JS, Kalantari L, Lechner A, Giesriegl A, Nandan SP, Alaya P, Kashiwaya S, Sauer M, Foelske A, Rosen J, Blaha P, Cherevan A, Eder D. Elucidating the formation and active state of Cu co-catalysts for photocatalytic hydrogen evolution. JOURNAL OF MATERIALS CHEMISTRY. A 2021; 9:21958-21971. [PMID: 34707872 PMCID: PMC8492008 DOI: 10.1039/d1ta05561e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The design of active and selective co-catalysts constitutes one of the major challenges in developing heterogeneous photocatalysts for energy conversion applications. This work provides a comprehensive insight into thermally induced bottom-up generation and transformation of a series of promising Cu-based co-catalysts. We demonstrate that the volcano-type HER profile as a function of calcination temperature is independent of the type of the Cu precursor but is affected by changes in oxidation state and location of the copper species. Supported by DFT modeling, our data suggest that low temperature (<200 °C) treatments facilitate electronic communication between the Cu species and TiO2, which allows for a more efficient charge utilization and maximum HER rates. In contrast, higher temperatures (>200 °C) do not affect the Cu oxidation state, but induce a gradual, temperature-dependent surface-to-bulk diffusion of Cu, which results in interstitial, tetra-coordinated Cu+ species. The disappearance of Cu from the surface and the introduction of new defect states is associated with a drop in HER performance. This work examines electronic and structural effects that are in control of the photocatalytic activity and can be transferred to other systems for further advancing photocatalysis.
Collapse
Affiliation(s)
- Jasmin S Schubert
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Leila Kalantari
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Andreas Lechner
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Ariane Giesriegl
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Sreejith P Nandan
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Pablo Alaya
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Shun Kashiwaya
- Materials Design, Department of Physics, Chemistry, and Biology (IFM), Linköping University 58183 Linköping Sweden
| | - Markus Sauer
- Analytical Instrumentation Center, Technische Universität Wien (TU Wien) Lehargasse 6 1060 Vienna Austria
| | - Annette Foelske
- Analytical Instrumentation Center, Technische Universität Wien (TU Wien) Lehargasse 6 1060 Vienna Austria
| | - Johanna Rosen
- Materials Design, Department of Physics, Chemistry, and Biology (IFM), Linköping University 58183 Linköping Sweden
| | - Peter Blaha
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Alexey Cherevan
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| | - Dominik Eder
- Institute of Materials Chemistry, Technische Universität Wien (TU Wien) Getreidemarkt 9 1060 Vienna Austria
| |
Collapse
|
21
|
Han K, Haiber DM, Knöppel J, Lievens C, Cherevko S, Crozier P, Mul G, Mei B. CrO x-Mediated Performance Enhancement of Ni/NiO-Mg:SrTiO 3 in Photocatalytic Water Splitting. ACS Catal 2021; 11:11049-11058. [PMID: 34513203 PMCID: PMC8422963 DOI: 10.1021/acscatal.1c03104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/07/2021] [Indexed: 01/17/2023]
Abstract
![]()
By photodeposition
of CrOx on SrTiO3-based
semiconductors doped with aliovalent Mg(II) and functionalized with
Ni/NiOx catalytic nanoparticles (economically significantly
more viable than commonly used Rh catalysts), an increase in apparent
quantum yield (AQYs) from ∼10 to 26% in overall water splitting
was obtained. More importantly, deposition of CrOx also
significantly enhances the stability of Ni/NiO nanoparticles in the
production of hydrogen, allowing sustained operation, even in intermittent
cycles of illumination. In situ elemental analysis
of the water constituents during or after photocatalysis by inductively
coupled plasma mass spectrometry/optical emission spectrometry shows
that after CrOx deposition, dissolution of Ni ions from
Ni/NiOx-Mg:SrTiO3 is significantly suppressed,
in agreement with the stabilizing effect observed, when both Mg dopant
and CrOx are present. State-of-the-art electron microscopy
and energy-dispersive X-ray spectroscopy (EDX) and electron energy-loss
spectroscopy (EELS) analyses demonstrate that upon preparation, CrOx is photodeposited in the vicinity of several, but not all,
Ni/NiOx particles. This implies the formation of a Ni–Cr
mixed metal oxide, which is highly effective in water reduction. Inhomogeneities
in the interfacial contact, evident from differences in contact angles
between Ni/NiOx particles and the Mg:SrTiO3 semiconductor,
likely affect the probability of reduction of Cr(VI) species during
synthesis by photodeposition, explaining the observed inhomogeneity
in the spatial CrOx distribution. Furthermore, by comparison
with undoped SrTiO3, Mg-doping appears essential to provide
such favorable interfacial contact and to establish the beneficial
effect of CrOx. This study suggests that the performance
of semiconductors can be significantly improved if inhomogeneities
in interfacial contact between semiconductors and highly effective
catalytic nanoparticles can be resolved by (surface) doping and improved
synthesis protocols.
Collapse
Affiliation(s)
- Kai Han
- Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Diane M. Haiber
- School for Engineering—Matter Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Julius Knöppel
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr. 3, 91058 Erlangen, Germany
- Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Caroline Lievens
- Faculty of Geo-information Science and Earth Observation, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Serhiy Cherevko
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Peter Crozier
- School for Engineering—Matter Transport & Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Guido Mul
- Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Bastian Mei
- Faculty of Science & Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
22
|
Biochar Nanoparticles over TiO2 Nanotube Arrays: A Green Co-Catalyst to Boost the Photocatalytic Degradation of Organic Pollutants. Catalysts 2021. [DOI: 10.3390/catal11091048] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Biochar nanoparticles (BC NPs), produced by low temperature pyrolysis (350 °C) of microalgae (Nannochloropsis sp.) and nutshells, are proposed as low-cost and sustainable co-catalysts to promote the photocatalytic activity of TiO2 nanotube (NT) arrays towards the degradation of methylene blue (MB) used as an organic pollutant model molecule. BC NPs (size < 25 nm) were obtained by treating bulk BC (i.e., biomass after pyrolysis) by sonication–centrifugation cycles in a water solution. The filtered BC NPs dispersion was deposited by simple drop-casting on the TiO2 NT support. The BC loading was varied by performing multiple depositions. Photocatalytic experiments under UV light (365 nm) revealed that the decoration with BC NPs significantly improves the TiO2 photoactivity. Such enhancement is mainly influenced by the amount of BC deposited; upon optimizing the BC deposition conditions, the rate of photocatalytic degradation of MB increases approximately three times with respect to bare TiO2, almost irrespective of the nature of the raw material. The greater photocatalytic activity of BC-TiO2 can be attributed to the synergistic combination of reactant/product adsorption and catalytic degradation of the adsorbed organic pollutant, as well as an improved charge carrier separation and electron transfer.
Collapse
|
23
|
Zhao Y, Li Y, Sun L. Recent advances in photocatalytic decomposition of water and pollutants for sustainable application. CHEMOSPHERE 2021; 276:130201. [PMID: 33725623 DOI: 10.1016/j.chemosphere.2021.130201] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Photoinduced reduction and oxidation, the important processes in photocatalytic water splitting and organic degradation, have generated increasing interest to address the energy and environmental issues. In this review, the recent developments in bandgap and interfacial engineering for enhanced light absorption, efficient charge separation and interfacial reaction are focused toward the applications in photocatalytic water splitting and organic degradation. In photoinduced reduction for hydrogen evolution, three major strategies are discussed: cocatalysts, sacrificial agents and heterojunctions. In photoinduced oxidation for organic degradation, three types of emerging pollutants of current concerns are highlighted: organic dyes, pharmaceuticals and volatile organic compounds. The key challenges of promising photocatalysts are discussed for future development and practical application.
Collapse
Affiliation(s)
- Yujie Zhao
- School of Materials Science and Engineering, Beihang Unviersity, Beijing, 100191, China
| | - Yan Li
- School of Materials Science and Engineering, Beihang Unviersity, Beijing, 100191, China.
| | - Lidong Sun
- School of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
24
|
Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin. Catalysts 2021. [DOI: 10.3390/catal11060728] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The extensive application of antibiotics in human and veterinary medicine has led to their widespread occurrence in a natural aquatic environment. Global health crisis is associated with the fast development of antimicrobial resistance, as more and more infectious diseases cannot be treated more than once. Sulfamethoxazole, trimethoprim and ciprofloxacin are the most commonly detected antibiotics in water systems worldwide. The persistent and toxic nature of these antibiotics makes their elimination by conventional treatment methods at wastewater treatment plants almost impossible. The application of advanced oxidation processes and heterogeneous photocatalysis over TiO2-based materials is a promising solution. This highly efficient technology has the potential to be sustainable, cost-efficient and energy-efficient. A comprehensive review on the application of various TiO2-based photocatalysts for the degradation of sulfamethoxazole, trimethoprim and ciprofloxacin is focused on highlighting their photocatalytic performance under various reaction conditions (different amounts of pollutant and photocatalyst, pH, light source, reaction media, presence of inorganic ions, natural organic matter, oxidants). Mineralization efficiency and ecotoxicity of final products have been also considered. Further research needs have been presented based on the literature findings. Among them, design and development of highly efficient under sunlight, stable, recyclable and cost-effective TiO2-based materials; usage of real wastewaters for photocatalytic tests; and compulsory assessment of products ecotoxicity are the most important research tasks in order to meet requirements for industrial application.
Collapse
|
25
|
Shahvaranfard F, Ghigna P, Minguzzi A, Wierzbicka E, Schmuki P, Altomare M. Dewetting of PtCu Nanoalloys on TiO 2 Nanocavities Provides a Synergistic Photocatalytic Enhancement for Efficient H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38211-38221. [PMID: 32706239 DOI: 10.1021/acsami.0c10968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We investigate the co-catalytic activity of PtCu alloy nanoparticles for photocatalytic H2 evolution from methanol-water solutions. To produce the photocatalysts, a few-nanometer-thick Pt-Cu bilayers are deposited on anodic TiO2 nanocavity arrays and converted by solid-state dewetting via a suitable thermal treatment into bimetallic PtCu nanoparticles. X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) results prove the formation of PtCu nanoalloys that carry a shell of surface oxides. X-ray absorption near-edge structure (XANES) data support Pt and Cu alloying and indicate the presence of lattice disorder in the PtCu nanoparticles. The PtCu co-catalyst on TiO2 shows a synergistic activity enhancement and a significantly higher activity toward photocatalytic H2 evolution than Pt- or Cu-TiO2. We propose the enhanced activity to be due to Pt-Cu electronic interactions, where Cu increases the electron density on Pt, favoring a more efficient electron transfer for H2 evolution. In addition, Cu can further promote the photoactivity by providing additional surface catalytic sites for hydrogen recombination. Remarkably, when increasing the methanol concentration up to 50 vol % in the reaction phase, we observe for PtCu-TiO2 a steeper activity increase compared to Pt-TiO2. A further increase in methanol concentration (up to 80 vol %) causes for Pt-TiO2 a clear activity decay, while PtCu-TiO2 still maintains a high level of activity. This suggests improved robustness of PtCu nanoalloys against poisoning from methanol oxidation products such as CO.
Collapse
Affiliation(s)
- Fahimeh Shahvaranfard
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Paolo Ghigna
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 13, 27100 Pavia, Italy
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Ewa Wierzbicka
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| | - Patrik Schmuki
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, 80203 Jeddah, Kingdom of Saudi Arabia
| | - Marco Altomare
- Institute for Surface Science and Corrosion WW4-LKO, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Martensstrasse 7, 91058 Erlangen, Germany
| |
Collapse
|
26
|
Eder M, Courtois C, Kratky T, Günther S, Tschurl M, Heiz U. Nickel clusters on TiO 2(110): thermal chemistry and photocatalytic hydrogen evolution of methanol. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01465f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While nickel clusters, similar as to platinum ones, facilitate the thermal recombination of hydrogen in the photocatalysis of alcohols, they also undergo photocorrosion over time by the formation of carbon deposits.
Collapse
Affiliation(s)
- Moritz Eder
- Chair of Physical Chemistry & Catalysis Research Center
- Technical University of Munich
- 85748 Garching
- Germany
| | - Carla Courtois
- Chair of Physical Chemistry & Catalysis Research Center
- Technical University of Munich
- 85748 Garching
- Germany
| | - Tim Kratky
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
- Germany
| | - Sebastian Günther
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
- Germany
| | - Martin Tschurl
- Chair of Physical Chemistry & Catalysis Research Center
- Technical University of Munich
- 85748 Garching
- Germany
| | - Ueli Heiz
- Chair of Physical Chemistry & Catalysis Research Center
- Technical University of Munich
- 85748 Garching
- Germany
| |
Collapse
|
27
|
Eder M, Courtois C, Kratky T, Günther S, Tschurl M, Heiz U. Correction: Nickel clusters on TiO 2(110): thermal chemistry and photocatalytic hydrogen evolution of methanol. Catal Sci Technol 2020. [DOI: 10.1039/d0cy90102d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Correction for ‘Nickel clusters on TiO2(110): thermal chemistry and photocatalytic hydrogen evolution of methanol’ by Moritz Eder et al., Catal. Sci. Technol., 2020, DOI: 10.1039/d0cy01465f.
Collapse
Affiliation(s)
- Moritz Eder
- Chair of Physical Chemistry & Catalysis Research Center
- Technical University of Munich
- 85748 Garching
- Germany
| | - Carla Courtois
- Chair of Physical Chemistry & Catalysis Research Center
- Technical University of Munich
- 85748 Garching
- Germany
| | - Tim Kratky
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
- Germany
| | - Sebastian Günther
- Department of Chemistry
- Technical University of Munich
- 85748 Garching
- Germany
| | - Martin Tschurl
- Chair of Physical Chemistry & Catalysis Research Center
- Technical University of Munich
- 85748 Garching
- Germany
| | - Ueli Heiz
- Chair of Physical Chemistry & Catalysis Research Center
- Technical University of Munich
- 85748 Garching
- Germany
| |
Collapse
|