1
|
Yang L, Yi M, Wu X, Lu Y, Zhang Z. Dirhodium(II)/XantPhos Catalyzed Synthesis of β-(E)-Vinylsilanes via Hydrosilylation and Isomerization from Alkynes. Chemistry 2024:e202402406. [PMID: 39187432 DOI: 10.1002/chem.202402406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
A concise hydrosilylation of alkynes for synthesizing β-(E)-vinylsilanes catalyzed by dirhodium(II)/XantPhos has been developed. In this reaction, β-(E)-vinylsilanes were generated from the isomerization of β-(Z)-vinylsilanes catalyzed by dirhodium(II) hydride species rather than the direct insertion of triple bond into M-H or M-Si bond (traditional Chalk-Harrod mechanism or modified Chalk-Harrod mechanism). The hydrosilylation displayed a broad substrate scope for alkynes and tertiary silanes, tolerating diverse functional groups including halides, nitriles, amines, esters, and heterocycles.
Collapse
Affiliation(s)
- Liqun Yang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Mingjun Yi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Xiaoyu Wu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Yan Lu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Zhaoguo Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
2
|
Zhang Y, Zang Z, Gao Y, Li W, Zhu T. Hydrosilylation of Arynes with Silanes and Silicon-Based Polymer. Chemistry 2024; 30:e202401440. [PMID: 38870472 DOI: 10.1002/chem.202401440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Benzyne derived from hexadehydrogenated Diels Alder (HDDA) reactions was found to be an efficient hydrosilylation acceptors. Various silanes can react smoothly with HDDA-derived benzyne to give the arylation products. Lewis acid such as boron trifluoride etherate can accelerate these hydrosilylation reactions. Polyhydromethylsiloxane (PHMS), a widely used organosilicon polymer, was also successfully modified using our method. About 5 % of Si-H bonds in the polymer were inserted by benzynes, giving a functional PHMS with much more solubility in methanol and with a blue-emitting fluorescence behavior. Mechanism research shows that the insertion of benzyne into the Si-H bond probably undergoes a synergistic pathway, which is quite different from the traditional radical-initiated hydrosilylation or transition-metal-catalyzed hydrosilylation.
Collapse
Affiliation(s)
- Ying Zhang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Zhenming Zang
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Yuan Gao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Wenchang Li
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| | - Tingshun Zhu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Chemistry, IGCME, Sun Yat-sen University, 510275, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Luque-Gómez A, García-Orduña P, Lahoz FJ, Iglesias M. Synthesis and catalytic activity of well-defined Co(I) complexes based on NHC-phosphane pincer ligands. Dalton Trans 2023; 52:12779-12788. [PMID: 37615585 DOI: 10.1039/d3dt00463e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A new methodology for the preparation of Co(I)-NHC (NHC = N-heterocyclic carbene) complexes, namely, [Co(PCNHCP)(CO)2][Co(CO)4] (1) and [Co(PCNHCP)(CO)2]BF4 (2), has been developed (PCNHCP = 1,3-bis(2-(diphenylphosphanyl)ethyl)-imidazol-2-ylidene). Both complexes can be straightforwardly prepared by direct reaction of their parent imidazolium salts with the Co(0) complex Co2(CO)8. Complex 1 efficiently catalyses the reductive amination of furfural and levulinic acid employing silanes as reducing agents under mild conditions. Furfural has been converted into a variety of secondary and tertiary amines employing dimethyl carbonate as the solvent, while levulinic acid has been converted into pyrrolidines under solventless conditions. Dehydrocoupling of the silane to give polysilanes has been observed to occur as a side reaction of the hydrosilylation process.
Collapse
Affiliation(s)
- Ana Luque-Gómez
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Pilar García-Orduña
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Fernando J Lahoz
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| | - Manuel Iglesias
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009-Zaragoza, Spain.
| |
Collapse
|
4
|
Behera RR, Saha R, Kumar AA, Sethi S, Jana NC, Bagh B. Hydrosilylation of Terminal Alkynes Catalyzed by an Air-Stable Manganese-NHC Complex. J Org Chem 2023. [PMID: 37317486 DOI: 10.1021/acs.joc.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In recent years, catalysis with base metal manganese has received a significant amount of interest. Catalysis with manganese complexes having N-heterocyclic carbenes (NHCs) is relatively underdeveloped in comparison to the extensively investigated manganese catalysts possessing pincer ligands (particularly phosphine-based ligands). Herein, we describe the synthesis of two imidazolium salts decorated with picolyl arms (L1 and L2) as NHC precursors. Facile coordination of L1 and L2 with MnBr(CO)5 in the presence of a base resulted in the formation manganese(I)-NHC complexes (1 and 2) as an air-stable solid in good isolated yield. Single-crystal X-ray analysis revealed the structure of the cationic complexes [Mn(CO)3(NHC)][PF6] with tridentate N,C,N binding of the NHC ligand in a facile fashion. Along with a few known manganese(I) complexes, these Mn(I)-NHC complexes 1 and 2 were tested for the hydrosilylation of terminal alkynes. Complex 1 was proved to be an effective catalyst for the hydrosilylation of terminal alkynes with good selectivity toward the less thermodynamically stable β-(Z)-vinylsilanes. This method provided good regioselectivity (anti-Markovnikov addition) and stereoselectivity (β-(Z)-product). Experimental evidence suggested that the present hydrosilylation pathway involved an organometallic mechanism with manganese(I)-silyl species as a possible reactive intermediate.
Collapse
Affiliation(s)
- Rakesh R Behera
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Ratnakar Saha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Alamsaty Ashis Kumar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subrat Sethi
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Narayan Ch Jana
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Bidraha Bagh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
5
|
Bulky NHC–Cobalt Complex-Catalyzed Highly Markovnikov-Selective Hydrosilylation of Alkynes. Catalysts 2023. [DOI: 10.3390/catal13030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
The hydrosilylation of alkynes is one of the most attractive and, at the same time, most challenging catalytic transformations, usually demanding the use of noble transition metals. We describe a catalytic system, based on cobalt(0) complex and bulky N-heterocyclic carbene (NHC) ligands, permitting the highly effective hydrosilylation of a broad scope of alkynes and silanes. The application of bulky NHC ligands allowed a decrease in the amount of cobalt necessary for an effective reaction run to 2.5 mol% and provided excellent selectivity towards challenging α-vinylsilanes. The developed method tolerates a number of substituted aryl, alkyl, and silyl acetylenes. Moreover, it is suitable for both tertiary and secondary silanes. Our findings confirm that steric hindrance around the metal center can effectively increase the activity of a catalyst and ensure better selectivity than those of analogous complexes bearing smaller ligands.
Collapse
|
6
|
Lam RH, Keaveney ST, Messerle BA, Pernik I. Bimetallic Rhodium Complexes: Precatalyst Activation-Triggered Bimetallic Enhancement for the Hydrosilylation Transformation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Raphael H. Lam
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Sinead T. Keaveney
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Barbara A. Messerle
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Indrek Pernik
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
7
|
Jiménez MV, Ojeda-Amador AI, Puerta-Oteo R, Martínez-Sal J, Passarelli V, Pérez-Torrente JJ. Selective Oxidation of Glycerol via Acceptorless Dehydrogenation Driven by Ir(I)-NHC Catalysts. Molecules 2022; 27:7666. [PMID: 36431768 PMCID: PMC9696977 DOI: 10.3390/molecules27227666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Iridium(I) compounds featuring bridge-functionalized bis-NHC ligands (NHC = N-heterocyclic carbene), [Ir(cod)(bis-NHC)] and [Ir(CO)2(bis-NHC)], have been prepared from the appropriate carboxylate- or hydroxy-functionalized bis-imidazolium salts. The related complexes [Ir(cod)(NHC)2]+ and [IrCl(cod)(NHC)(cod)] have been synthesized from a 3-hydroxypropyl functionalized imidazolium salt. These complexes have been shown to be robust catalysts in the oxidative dehydrogenation of glycerol to lactate (LA) with dihydrogen release. High activity and selectivity to LA were achieved in an open system under low catalyst loadings using KOH as a base. The hydroxy-functionalized bis-NHC catalysts are much more active than both the carboxylate-functionalized ones and the unbridged bis-NHC iridium(I) catalyst with hydroxyalkyl-functionalized NHC ligands. In general, carbonyl complexes are more active than the related 1,5-cyclooctadiene ones. The catalyst [Ir(CO)2{(MeImCH2)2CHOH}]Br exhibits the highest productivity affording TONs to LA up to 15,000 at very low catalyst loadings.
Collapse
Affiliation(s)
- M. Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | | | | | | | | | - Jesús J. Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| |
Collapse
|
8
|
Iizuka K, Nakajima Y, Sato K. Heterolytic cleavage of a Si-H bond by a metal-ligand cooperation of a cationic iridium amido complex and hydrosilylation of aldehydes. Dalton Trans 2022; 51:12781-12785. [PMID: 35946573 DOI: 10.1039/d2dt01733d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterolytic cleavage of a Si-H bond was achieved mediated by a metal-ligand cooperation of a cationic iridium amido complex. The reaction was applied to the catalytic hydrosilylation of benzaldehyde and its derivatives, affording the corresponding hydrosilylated products in moderate to good yields.
Collapse
Affiliation(s)
- Kosuke Iizuka
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| |
Collapse
|
9
|
Ríos P, Rodríguez A, Conejero S. Activation of Si-H and B-H bonds by Lewis acidic transition metals and p-block elements: same, but different. Chem Sci 2022; 13:7392-7418. [PMID: 35872827 PMCID: PMC9241980 DOI: 10.1039/d2sc02324e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/18/2022] [Indexed: 01/01/2023] Open
Abstract
In this Perspective we discuss the ability of transition metal complexes to activate and cleave the Si-H and B-H bonds of hydrosilanes and hydroboranes (tri- and tetra-coordinated) in an electrophilic manner, avoiding the need for the metal centre to undergo two-electron processes (oxidative addition/reductive elimination). A formal polarization of E-H bonds (E = Si, B) upon their coordination to the metal centre to form σ-EH complexes (with coordination modes η1 or η2) favors this type of bond activation that can lead to reactivities involving the formation of transient silylium and borenium/boronium cations similar to those proposed in silylation and borylation processes catalysed by boron and aluminium Lewis acids. We compare the reactivity of transition metal complexes and boron/aluminium Lewis acids through a series of catalytic reactions in which pieces of evidence suggest mechanisms involving electrophilic reaction pathways.
Collapse
Affiliation(s)
- Pablo Ríos
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Amor Rodríguez
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| | - Salvador Conejero
- Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica CSIC and Universidad de Sevilla, Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
10
|
Puerta-Oteo R, Ojeda-Amador AI, Jiménez MV, Pérez-Torrente JJ. Catalytic applications of zwitterionic transition metal compounds. Dalton Trans 2021; 51:817-830. [PMID: 34904607 DOI: 10.1039/d1dt03746c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This frontiers article highlights recent developments on the application of transition metal-based zwitterionic complexes in catalysis. Recent applications of selected zwitterionic catalysts in polymerization reactions, including the carbonylative polymerization of cyclic ethers, carbon-carbon coupling reactions, the asymmetric hydrogenation of unfunctionalized olefins, and the hydrofunctionalization of alkenes are reviewed. In addition, advances in the field of hydrogenation/dehydrogenation reactions related to energy applications, including the hydrogenation of CO2 and the dehydrogenation of formic acid and N-heterocycles, the functionalization of CO2 with amines and hydrosilanes, and the valorization of polyfunctional bio-based feedstocks, such as the dehygrogenation of glycerol to lactic acid or the reduction of levulinic acid into γ-valerolactone, are also described.
Collapse
Affiliation(s)
- Raquel Puerta-Oteo
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009-Zaragoza, Spain.
| | - Ana I Ojeda-Amador
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009-Zaragoza, Spain.
| | - M Victoria Jiménez
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009-Zaragoza, Spain.
| | - Jesús J Pérez-Torrente
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009-Zaragoza, Spain.
| |
Collapse
|
11
|
Panyam PKR, Atwi B, Ziegler F, Frey W, Nowakowski M, Bauer M, Buchmeiser MR. Rh(I)/(III)-N-Heterocyclic Carbene Complexes: Effect of Steric Confinement Upon Immobilization on Regio- and Stereoselectivity in the Hydrosilylation of Alkynes. Chemistry 2021; 27:17220-17229. [PMID: 34672398 PMCID: PMC9299010 DOI: 10.1002/chem.202103099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Rh(I) NHC and Rh(III) Cp* NHC complexes (Cp*=pentamethylcyclopentadienyl, NHC=N-heterocyclic carbene=pyrid-2-ylimidazol-2-ylidene (Py-Im), thiophen-2-ylimidazol-2-ylidene) are presented. Selected catalysts were selectively immobilized inside the mesopores of SBA-15 with average pore diameters of 5.0 and 6.2 nm. Together with their homogenous progenitors, the immobilized catalysts were used in the hydrosilylation of terminal alkynes. For aromatic alkynes, both the neutral and cationic Rh(I) complexes showed excellent reactivity with exclusive formation of the β(E)-isomer. For aliphatic alkynes, however, selectivity of the Rh(I) complexes was low. By contrast, the neutral and cationic Rh(III) Cp* NHC complexes proved to be highly regio- and stereoselective catalysts, allowing for the formation of the thermodynamically less stable β-(Z)-vinylsilane isomers at room temperature. Notably, the SBA-15 immobilized Rh(I) catalysts, in which the pore walls provide an additional confinement, showed excellent β-(Z)-selectivity in the hydrosilylation of aliphatic alkynes, too. Also, in the case of 4-aminophenylacetylene, selective formation of the β(Z)-isomer was observed with a neutral SBA-15 supported Rh(III) Cp* NHC complex but not with its homogenous counterpart. These are the first examples of high β(Z)-selectivity in the hydrosilylation of alkynes by confinement generated upon immobilization inside mesoporous silica.
Collapse
Affiliation(s)
- Pradeep K. R. Panyam
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Boshra Atwi
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Felix Ziegler
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Wolfgang Frey
- Institute of Organic ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Michal Nowakowski
- Chemistry DepartmentPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Matthias Bauer
- Chemistry DepartmentPaderborn UniversityWarburger Str. 10033098PaderbornGermany
| | - Michael R. Buchmeiser
- Institute of Polymer ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
- German Institutes of Textile and Fiber ResearchKörschtalstr. 2673770DenkendorfGermany
| |
Collapse
|
12
|
Karataş MO, Alıcı B, Passarelli V, Özdemir I, Pérez-Torrente JJ, Castarlenas R. Iridium(i) complexes bearing hemilabile coumarin-functionalised N-heterocyclic carbene ligands with application as alkyne hydrosilylation catalysts. Dalton Trans 2021; 50:11206-11215. [PMID: 34338264 DOI: 10.1039/d1dt01946e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A set of iridium(i) complexes of formula IrCl(κC,η2-IRCouR')(cod) or IrCl(κC, η2-BzIRCouR')(cod) (cod = 1,5-cyclooctadiene; Cou = coumarin; I = imidazolin-2-carbene; BzI = benzimidazolin-2-carbene) have beeen prepared from the corresponding azolium salt and [Ir(μ-OMe)(cod)]2 in THF at room temperature. The crystalline structures of 4b and 5b show a distorted trigonal bipyramidal configuration in the solid state with a coordinated coumarin moiety. In contrast, an equilibrium between this pentacoordinated structure and the related square planar isomer is observed in solution as a consequence of the hemilability of the pyrone ring. Characterization of both species by NMR was achieved at the low and high temperature limits, respectively. In addition, the thermodynamic parameters of the equilibrium, ΔHR and ΔSR, were obtained by VT 1H NMR spectroscopy and fall in the range 22-33 kJ mol-1 and 72-113 J mol-1 K-1, respectively. Carbonylation of IrCl(κC,η2-BzITolCou7,8-Me2)(cod) resulted in the formation of a bis-CO derivative showing no hemilabile behaviour. The newly synthesised complexes efficiently catalyze the hydrosilylation of alkynes at room temperature with a preference for the β-(Z) vinylsilane isomer.
Collapse
Affiliation(s)
- Mert Olgun Karataş
- Departamento de Química Inorgánica-Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), Universidad de Zaragoza-CSIC, C/Pedro Cerbuna 12, CP. 50009, Zaragoza, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Zhu SF, He P, Hu MY, Zhang XY. Transition-Metal-Catalyzed Stereo- and Regioselective Hydrosilylation of Unsymmetrical Alkynes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1605-9572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractAlkyne hydrosilylation is one of the most efficient methods for the synthesis of alkenyl silicon derivatives and has been a hot topic of research for decades. This short review summarizes the progress in transition-metal-catalyzed stereo- and regioselective hydrosilylation of unsymmetrical alkynes. Topics are discussed based on different types of alkynes and the selectivities.1 Introduction2 Terminal Alkyne Hydrosilylation2.1 β-E Selectivity2.2 β-Z Selectivity2.3 α-selectivity3 Internal Alkyne Hydrosilylation3.1 Aryl–Alkyl Acetylenes3.2 Alkyl–Alkyl Acetylenes3.3 Internal Alkynes with Polarized Substituents4 Summary and Outlook
Collapse
|
14
|
Mutoh Y, Yamamoto K, Mohara Y, Saito S. (Z)-Selective Hydrosilylation and Hydroboration of Terminal Alkynes Enabled by Ruthenium Complexes with an N-Heterocyclic Carbene Ligand. CHEM REC 2021; 21:3429-3441. [PMID: 34028185 DOI: 10.1002/tcr.202100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/08/2022]
Abstract
Metal-catalyzed trans-1,2-hydrosilylations and hydroborations of terminal alkynes that generate synthetically valuable (Z)-alkenylsilanes and (Z)-alkenylboranes remain challenging due to the (E)-selective nature of the reactions and the formation of the thermodynamically unfavorable (Z)-isomer. The development of new, efficient catalytic systems for the (Z)-selective hydrosilylation and hydroboration of terminal alkynes is thus highly desirable from a fundamental perspective as it would deepen our understanding of the metal-catalyzed (Z)-selective hydrosilylation and hydroboration of terminal alkynes. This personal account describes our research for developing a ruthenium complex that can efficiently catalyze the hydrosilylation and hydroboration of terminal alkynes, and for exploring the factors controlling (Z)-selectivity of the reactions. Our effort into the activation of B-protected boronic acids, R-B(dan) (dan=naphthalene-1,8-diaminato), that was believed not to participate in Suzuki-Miyaura cross-coupling, is also discussed.
Collapse
Affiliation(s)
- Yuichiro Mutoh
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan.,RIKEN Center for Sustainable Resource Science 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kensuke Yamamoto
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yusei Mohara
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Shinichi Saito
- Department of Chemistry, Faculty of Science, Tokyo University of Science 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
15
|
Roemer M, Gonçales VR, Keaveney ST, Pernik I, Lian J, Downes J, Gooding JJ, Messerle BA. Carbon supported hybrid catalysts for controlled product selectivity in the hydrosilylation of alkynes. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02136a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of Rh- and Ir-hybrid catalysts with varying tether lengths has been prepared by immobilization of RhI, RhIII and IrIII complexes on carbon black, and applied in the hydrosilylation of alkynes.
Collapse
Affiliation(s)
- Max Roemer
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
- Department of Molecular Sciences
| | - Vinicius R. Gonçales
- School of Chemistry and the Australian Centre for NanoMedicine
- The University of New South Wales
- Sydney
- Australia
| | | | - Indrek Pernik
- School of Chemistry
- The University of Sydney
- Sydney
- Australia
| | - Jiaxin Lian
- School of Chemistry and the Australian Centre for NanoMedicine
- The University of New South Wales
- Sydney
- Australia
| | - James Downes
- Department of Physics and Astronomy
- Macquarie University
- Sydney
- Australia
| | - J. Justin Gooding
- School of Chemistry and the Australian Centre for NanoMedicine
- The University of New South Wales
- Sydney
- Australia
| | - Barbara A. Messerle
- Department of Molecular Sciences
- Macquarie University
- Sydney
- Australia
- School of Chemistry and the Australian Centre for NanoMedicine
| |
Collapse
|
16
|
Sánchez-Page B, Munarriz J, Jiménez MV, Pérez-Torrente JJ, Blasco J, Subias G, Passarelli V, Álvarez P. β-(Z) Selectivity Control by Cyclometalated Rhodium(III)–Triazolylidene Homogeneous and Heterogeneous Terminal Alkyne Hydrosilylation Catalysts. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03295] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Beatriz Sánchez-Page
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Julen Munarriz
- Department of Chemistry & Biochemistry, University of California—Los Angeles, Los Angeles, California 90095, United States
- Departamento de Quı́mica Fı́sica and Instituto de Biocomputación y Fı́sica de Sistemas Complejos (BIFI), Universidad de Zaragoza, Facultad de Ciencias, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - M. Victoria Jiménez
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Jesús J. Pérez-Torrente
- Departamento de Quı́mica Inorgánica, Instituto de Sı́ntesis Quı́mica y Catálisis Homogénea-ISQCH, Universidad de Zaragoza-C.S.I.C., 50009 Zaragoza, Spain
| | - Javier Blasco
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Fı́sica de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Gloria Subias
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC - Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Fı́sica de la Materia Condensada, Universidad de Zaragoza, Zaragoza 50009, Spain
| | - Vincenzo Passarelli
- Centro Universitario de la Defensa, Ctra. Huesca s/n, ES-50090 Zaragoza, Spain
| | - Patricia Álvarez
- Instituto de Ciencia y Tecnologı́a del Carbono, INCAR, CSIC, P.O. Box, 73, 33080 Oviedo, Spain
| |
Collapse
|
17
|
Wang ZL, Zhang FL, Xu JL, Shan CC, Zhao M, Xu YH. Copper-Catalyzed Anti-Markovnikov Hydrosilylation of Terminal Alkynes. Org Lett 2020; 22:7735-7742. [DOI: 10.1021/acs.orglett.0c02952] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Zi-Lu Wang
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Feng-Lian Zhang
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Jian-Lin Xu
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Cui-Cui Shan
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Meng Zhao
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yun-He Xu
- Department of Chemistry and Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|