1
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
2
|
Mascitti A, Scioli G, Tonucci L, Canale V, Germani R, Di Profio P, d’Alessandro N. First Evidence of the Double-Bond Formation by Deoxydehydration of Glycerol and 1,2-Propanediol in Ionic Liquids. ACS OMEGA 2022; 7:27980-27990. [PMID: 35990467 PMCID: PMC9386840 DOI: 10.1021/acsomega.2c01803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Deoxydehydration (DODH) reaction of glycerol (GL) and 1,2-propanediol (1,2-PD), in ionic liquids (ILs), catalyzed by methyltrioxorhenium (MTO) and Re2O7, was studied in detail. To better understand the ability of ILs to improve the catalytic performance of the rhenium catalyst, several experiments, employing eight different cations and two different anions, were carried out. Among the anions, bis(trifluoromethylsulfonyl)imide (TFSI) appears to be more appropriate than PF6 -, for its relatively lower volatility of the resulting IL. Regarding the choice of the most appropriate cation, the presence of a single aromatic ring seems to be a necessary requirement for a satisfying and convenient reactivity. With the aim to extend the recyclability of the catalyst, experiments involving the readdition of polyol to the terminal reaction mixture were carried out. Worthy of interest is the fact that the presence of the IL prevents the inertization process of the catalyst, allowing us to obtain the alkene also after a readdition of fresh polyol.
Collapse
Affiliation(s)
- Andrea Mascitti
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Giuseppe Scioli
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| | - Lucia Tonucci
- Department
of Philosophical, Educational and Economic Sciences, “G. d’Annunzio” University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Valentino Canale
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Raimondo Germani
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di sotto, 06123 Perugia, Italy
| | - Pietro Di Profio
- Department
of Pharmacy, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Nicola d’Alessandro
- Department
of Engineering and Geology, “G. d’Annunzio”
University of Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy
| |
Collapse
|
3
|
Peng Q, Wang H, Xia Y. Quercetin-Zirconium: A Green and Highly Efficient Catalyst for the Meerwein–Ponndorf–Verley Reduction of Furfural. Catal Letters 2022. [DOI: 10.1007/s10562-022-04009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Geng Y, Li H. Hydrogen Spillover-Enhanced Heterogeneously Catalyzed Hydrodeoxygenation for Biomass Upgrading. CHEMSUSCHEM 2022; 15:e202102495. [PMID: 35230748 DOI: 10.1002/cssc.202102495] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/25/2022] [Indexed: 06/14/2023]
Abstract
Hydrodeoxygenation (HDO) is regarded as a promising technology for biomass upgrading to obtain sustainable and competitive chemicals and fuels. In fact, biomass HDO over heterogeneous solid catalysts is often accompanied by the phenomenon of hydrogen spillover, which further affects the catalytic performance. Thus, it is necessary to gain in-depth understand the promoting effect of hydrogen spillover in the biomass HDO process to obtain desired conversion and selectivity. This Review summarized the extensive research on hydrogen spillover in biomass refining and discussed in detail the regulation mechanism of hydrogen spillover in biomass HDO process, mainly by regulating different active center sites on catalyst supports, such as metal sites, acid sites, surface functional groups, and defective sites, which exhibit independent and synergistic characteristics promoting catalyst activity, selectivity, and stability. Finally, the prospective of hydrogen spillover in biomass HDO applications was critically evaluated, and the key technical challenges in developing "hydrogen-free" HDO and upgrading biofuels were highlighted. The presentation of hydrogen spillover-enhanced catalytic biomass HDO in this Review will hopefully provide insight and guidance for further development of efficient catalysts and preparation of high-value chemicals in the future.
Collapse
Affiliation(s)
- Yanyan Geng
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| | - Hao Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, 8 Guangrong Road, Tianjin, 300130, P. R. China
| |
Collapse
|
5
|
Jalali-Mola S, Torabi M, Yarie M, Zolfigol MA. Acidic tributyl phosphonium-based ionic liquid: an efficient catalyst for preparation of diverse pyridine systems via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2022; 12:34730-34739. [DOI: 10.1039/d2ra04631h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Experimental procedure for the synthesis of triaryl pyridines, indolyl pyridines and nicotinonitriles.
Collapse
Affiliation(s)
- Sepideh Jalali-Mola
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
6
|
Janssens K, Bugaev AL, Kozyr EG, Lemmens V, Guda AA, Usoltsev OA, Smolders S, Soldatov AV, De Vos DE. Evolution of the active species of homogeneous Ru hydrodeoxygenation catalysts in ionic liquids. Chem Sci 2022; 13:10251-10259. [PMID: 36277633 PMCID: PMC9473539 DOI: 10.1039/d2sc02150a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
This work establishes structure–property relationships in Ru-based catalytic systems for selective hydrodeoxygenation of ketones to alkenes by combining extensive catalytic testing, in situ X-ray absorption spectroscopy (XAS) under high pressures and temperatures and ex situ XAS structural characterization supported by density functional theory (DFT) calculations. Catalytic tests revealed the difference in hydrogenation selectivity for ketones (exemplified by acetone) or alkenes (exemplified by propene) upon changing the reaction conditions, more specifically in the presence of CO during a pretreatment step. XAS data demonstrated the evolution of the local ruthenium structure with different amounts of Cl/Br and CO ligands. In addition, in the absence of CO, the catalyst was reduced to Ru0, and this was associated with a significant decrease of the selectivity for ketone hydrogenation. For the Ru–bromide carbonyl complex, selectivity towards acetone hydrogenation over propene hydrogenation was explained on the basis of different relative energies of the first intermediate states of each reaction. These results give a complete understanding of the evolution of the Ru species, used for the catalytic valorization of biobased polyols to olefins in ionic liquids, identifying the undesired deactivation routes as well as possibilities for reactivation. This work establishes structure–property relationships in Ru-based catalytic systems for the selective hydrodeoxygenation of ketones to alkenes.![]()
Collapse
Affiliation(s)
- K Janssens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven, Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium
| | - A L Bugaev
- The Smart Materials Research Institute, Southern Federal University Sladkova 178/24 344090 Rostov-on-Don Russia
- Southern Scientific Centre, Russian Academy of Sciences Chekhova 41 344006 Rostov-on-Don Russia
| | - E G Kozyr
- The Smart Materials Research Institute, Southern Federal University Sladkova 178/24 344090 Rostov-on-Don Russia
- Department of Chemistry, University of Turin Via Giuria 5 10125 Torino Italy
| | - V Lemmens
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven, Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium
| | - A A Guda
- The Smart Materials Research Institute, Southern Federal University Sladkova 178/24 344090 Rostov-on-Don Russia
| | - O A Usoltsev
- The Smart Materials Research Institute, Southern Federal University Sladkova 178/24 344090 Rostov-on-Don Russia
| | - S Smolders
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven, Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium
| | - A V Soldatov
- The Smart Materials Research Institute, Southern Federal University Sladkova 178/24 344090 Rostov-on-Don Russia
| | - D E De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven, Celestijnenlaan 200F, Post Box 2454 3001 Leuven Belgium
| |
Collapse
|
7
|
Liu Q, Han F, Zhuang H, Zhang T, Ji N, Miao C. Direct deoxygenation of active allylic alcohols via metal-free catalysis. Org Biomol Chem 2022; 20:1680-1689. [DOI: 10.1039/d1ob02168k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct metal-free deoxygenation of highly active allylic alcohols catalyzed by a Brønsted acid was achieved, which avoids tedious reaction steps and eliminates metal contamination. By examining a series of Brønsted...
Collapse
|
8
|
Martini A, Bugaev AL, Guda SA, Guda AA, Priola E, Borfecchia E, Smolders S, Janssens K, De Vos D, Soldatov AV. Revisiting the Extended X-ray Absorption Fine Structure Fitting Procedure through a Machine Learning-Based Approach. J Phys Chem A 2021; 125:7080-7091. [PMID: 34351779 DOI: 10.1021/acs.jpca.1c03746] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel approach for the analysis of extended X-ray absorption fine structure (EXAFS) spectra is developed exploiting an inverse machine learning-based algorithm. Through this approach, it is possible to explore and account for, in a precise way, the nonlinear geometry dependence of the photoelectron backscattering phases and amplitudes of single and multiple scattering paths. In addition, the determined parameters are directly related to the 3D atomic structure, without the need to use complex parametrization as in the classical fitting approach. The applicability of the approach, its potential and the advantages over the classical fit were demonstrated by fitting the EXAFS data of two molecular systems, namely, the KAu (CN)2 and the [RuCl2(CO)3]2 complexes.
Collapse
Affiliation(s)
- A Martini
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia.,Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - A L Bugaev
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia.,Southern Scientific Centre, Russian Academy of Sciences, Chekhova 41, 344006 Rostov-on-Don, Russia
| | - S A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia.,Institute of mathematics, mechanics and computer science, Southern Federal University, Milchakova 8a, 344090 Rostov-on-Don, Russia
| | - A A Guda
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| | - E Priola
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy.,CrisDi, Interdepartemental Center for Crystallography, University of Turin, Torino, Via P. Giuria 7, I-10125 Italy
| | - E Borfecchia
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - S Smolders
- Department of Microbial and Molecular Systems (M2S); Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Post box 2454, 3001 Leuven, Belgium
| | - K Janssens
- Department of Microbial and Molecular Systems (M2S); Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Post box 2454, 3001 Leuven, Belgium
| | - D De Vos
- Department of Microbial and Molecular Systems (M2S); Centre for Membrane separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Post box 2454, 3001 Leuven, Belgium
| | - A V Soldatov
- The Smart Materials Research Institute, Southern Federal University, Sladkova 178/24, 344090 Rostov-on-Don, Russia
| |
Collapse
|
9
|
Olefin metathesis-based chemically recyclable polymers enabled by fused-ring monomers. Nat Chem 2021; 13:743-750. [PMID: 34294914 DOI: 10.1038/s41557-021-00748-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
A promising solution to address the challenges in plastics sustainability is to replace current polymers with chemically recyclable ones that can depolymerize into their constituent monomers to enable the circular use of materials. Despite some progress, few depolymerizable polymers exhibit the desirable thermal stability and strong mechanical properties of traditional polymers. Here we report a series of chemically recyclable polymers that show excellent thermal stability (decomposition temperature >370 °C) and tunable mechanical properties. The polymers are formed through ring-opening metathesis polymerization of cyclooctene with a trans-cyclobutane installed at the 5 and 6 positions. The additional ring converts the non-depolymerizable polycyclooctene into a depolymerizable polymer by reducing the ring strain energy in the monomer (from 8.2 kcal mol-1 in unsubstituted cyclooctene to 4.9 kcal mol-1 in the fused ring). The fused-ring monomer enables a broad scope of functionalities to be incorporated, providing access to chemically recyclable elastomers and plastics that show promise as next-generation sustainable materials.
Collapse
|
10
|
Janssens K, Stalpaert M, Henrion M, De Vos DE. From crude industrial waste glycerol to biopropene via Ru-mediated hydrodeoxygenation in ionic liquids. Chem Commun (Camb) 2021; 57:6324-6327. [PMID: 34076653 DOI: 10.1039/d1cc01779a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The catalytic conversion of crude glycerol to biopropene was investigated. A bifunctional Ru-ionic liquid system showed a high tolerance for common crude glycerol impurities like water, salts and methanol. After optimizing both dehydration and olefin selectivity, a 82% biopropene yield (94% selectivity) was obtained directly from industrial waste glycerol.
Collapse
Affiliation(s)
| | | | - Mickaël Henrion
- cMACS, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| | - Dirk E De Vos
- cMACS, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium.
| |
Collapse
|
11
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
12
|
Alfonso N, Do VK, Chavez AJ, Chen Y, Williams TJ. Catalyst carbonylation: a hidden, but essential, step in reaction initiation. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00322d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This minireview documents cases where catalyst carbonylation can be detrimental, beneficial, or even essential in the activation and lifecycle of catalysis for hydrogen transfer reactions.
Collapse
Affiliation(s)
- Nicolas Alfonso
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Van K. Do
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Anthony J. Chavez
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Yuhao Chen
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| | - Travis J. Williams
- Loker Hydrocarbon Research Institute and Department of Chemistry
- University of Southern California
- Los Angeles
- USA
| |
Collapse
|