1
|
Fernández S, Assaf EA, Ahmad S, Travis BD, Curley JB, Hazari N, Ertem MZ, Miller AJM. Room-Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO 2. Angew Chem Int Ed Engl 2025; 64:e202416061. [PMID: 39571086 DOI: 10.1002/anie.202416061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Indexed: 12/12/2024]
Abstract
The reduction of CO2 to synthetic fuels is a valuable strategy for energy storage. However, the formation of energy-dense liquid fuels such as methanol remains rare, particularly under low-temperature and low-pressure conditions that can be coupled to renewable electricity sources via electrochemistry. Here, a multicatalyst system pairing an electrocatalyst with a thermal organometallic catalyst is introduced, which enables the reduction of CO2 to methanol at ambient temperature and pressure. The cascade methanol synthesis proceeds via CO2 reduction to formate by electrocatalyst [Cp*Ir(bpy)Cl]+ (Cp*=pentamethylcyclopentadienyl, bpy=2,2'-bipyridine), Fischer esterification of formate to isopropyl formate catalyzed by trifluoromethanesulfonic acid (HOTf), and thermal transfer hydrogenation of isopropyl formate to methanol facilitated by the organometallic catalyst (H-PNP)Ir(H)3 (H-PNP=HN(C2H4PiPr2)2). The isopropanol solvent plays several crucial roles: activating formate ion as isopropyl formate, donating hydrogen for the reduction of formate ester to methanol via transfer hydrogenation, and lowering the barrier for transfer hydrogenation through hydrogen bonding interactions. In addition to reporting a method for room-temperature reduction of challenging ester substrates, this work provides a prototype for pairing electrochemical and thermal organometallic reactions that will guide the design and development of multicatalyst cascades.
Collapse
Affiliation(s)
- Sergio Fernández
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Eric A Assaf
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Shahbaz Ahmad
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Benjamin D Travis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Julia B Curley
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mehmed Z Ertem
- Chemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
2
|
Cloward IN, Liu T, Rose J, Jurado T, Bonn AG, Chambers MB, Pitman CL, Ter Horst MA, Miller AJM. Catalyst self-assembly accelerates bimetallic light-driven electrocatalytic H 2 evolution in water. Nat Chem 2024; 16:709-716. [PMID: 38528106 DOI: 10.1038/s41557-024-01483-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024]
Abstract
Hydrogen evolution is an important fuel-generating reaction that has been subject to mechanistic debate about the roles of monometallic and bimetallic pathways. The molecular iridium catalysts in this study undergo photoelectrochemical dihydrogen (H2) evolution via a bimolecular mechanism, providing an opportunity to understand the factors that promote bimetallic H-H coupling. Covalently tethered diiridium catalysts evolve H2 from neutral water faster than monometallic catalysts, even at lower overpotential. The unexpected origin of this improvement is non-covalent supramolecular self-assembly into nanoscale aggregates that efficiently harvest light and form H-H bonds. Monometallic catalysts containing long-chain alkane substituents leverage the self-assembly to evolve H2 from neutral water at low overpotential and with rates close to the expected maximum for this light-driven water splitting reaction. Design parameters for holding multiple catalytic sites in close proximity and tuning catalyst microenvironments emerge from this work.
Collapse
Affiliation(s)
- Isaac N Cloward
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianfei Liu
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin, China
| | - Jamie Rose
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tamara Jurado
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Annabell G Bonn
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew B Chambers
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Catherine L Pitman
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marc A Ter Horst
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
3
|
Song D, Xu W, He W, Li C, Yang J, Li J, Wang N. Selective Integrating Molecular Catalytic Units into Bipyridine-Based Covalent Organic Frameworks for Specific Photocatalytic Fuel Production. Inorg Chem 2024; 63:3444-3451. [PMID: 38331715 DOI: 10.1021/acs.inorgchem.3c04158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Molecular metal compounds have demonstrated excellent catalytic activity and product selectivity in the H2 evolution reaction (HER) and the CO2 reduction reaction (CO2RR). The heterogenization of molecular catalysts is regarded as an effective approach to improve their applicability. In this work, the molecular catalytic units [Cp*Ir(Bpy)Cl]+ and [Ru(Bpy)(CO)2Cl2] are constructed in situ on the bipyridine sites of the covalent organic framework for photocatalytic HER and CO2RR, respectively. Inheriting the impressive performance of molecular catalysts, the functionalized TpBpy-M exhibits excellent catalytic activity and product selectivity. Under visible light irradiation, the H2 production rate of TpBpy-Ir is about 760 μmol g-1 h-1, which is 6.7 times higher than that of TpBpy without built-in catalytic sites. Also, the HCOOH production rate of TpBpy-Ru is 271 μmol g-1 h-1, with an impressive selectivity of 88%. Control experiments validated that this improvement is attributed to the incorporation of molecular catalytic units into the framework. Photoluminescence spectroscopy measurements and theoretical calculation consistently demonstrate that, under illumination, the photosensitizer [Ru(Bpy)3]Cl2 is excited and transfers electrons to the catalytic sites in TpBpy-M, which then catalyzes the reduction of H+ and CO2.
Collapse
Affiliation(s)
- Dengmeng Song
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Wenhua Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Wei He
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Chengbo Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jing Yang
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Jun Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Ning Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an 710127, China
| |
Collapse
|
4
|
Fortunato MT, Moore CE, Turro C. Ligand-Centered Photocatalytic Hydrogen Production in an Axially Capped Rh 2(II,II) Paddlewheel Complex with Red Light. J Am Chem Soc 2023; 145:27348-27357. [PMID: 38055041 DOI: 10.1021/jacs.3c07532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
A new series of Rh2(II,II) complexes with the formula cis-[Rh2(DTolF)2(bpnp)(L)]2+, where bpnp = 2,7-bis(2-pyridyl)-1,8-naphthyridine, DTolF = N,N'-di(p-tolyl) formamidinate, and L = pdz (pyridazine; 2), cinn (cinnoline; 3), and bncn (benzo[c]cinnoline; 4), were synthesized from the precursor cis-[Rh2(DTolF)2(bpnp)(CH3CN)2]2+ (1). The first reduction couple in 2-4 is localized on the bpnp ligand at approximately -0.52 V vs Ag/AgCl in CH3CN (0.1 M TBAPF6), followed by reduction of the corresponding diazine ligand. Complex 1 exhibits a Rh2(δ*)/DTolF → bpnp(π*) metal/ligand-to-ligand charge-transfer (1ML-LCT) absorption with a maximum at 767 nm (ε = 1800 M-1 cm-1). This transition is also present in the spectra of 2-4, overlaid with the Rh2(δ*)/DTolF → L(π*) 1ML-LCT bands at 516 nm in 2 (L = pdz), 640 nm in 3 (L = cinn), and 721 nm in 4 (L = bncn). Complexes 2 and 3 exhibit Rh2(δ*)/DTolF → bpnp 3ML-LCT excited states with lifetimes, τ, of 3 and 5 ns, respectively, in CH3CN, whereas the lowest energy 3ML-LCT state in 4 is Rh2(δ*)/DTolF → bncn in nature with τ = 1 ns. Irradiation of 4 with 670 nm light in DMF in the presence of 0.1 M TsOH (p-toluene sulfonic acid) and 30 mM BNAH (1-benzyl-1,4-dihydronicotinamide) results in the production of H2 with a turnover number (TON) of 16 over 24 h. The axial capping of the Rh2(II,II) bimetallic core with the bpnp ligand prevents the formation of an Rh-H hydride intermediate. These results show that the observed photocatalytic reactivity is localized on the bncn ligand, representing the first example of ligand-centered H2 production.
Collapse
Affiliation(s)
- Matthew T Fortunato
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43214, United States
| |
Collapse
|
5
|
Balduf T, Blakemore JD, Caricato M. Computational Insights into the Influence of Ligands on Hydrogen Generation with [Cp*Rh] Hydrides. J Phys Chem A 2023. [PMID: 37436832 DOI: 10.1021/acs.jpca.3c02550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
This work reports a computational investigation of the effect of ancillary ligands on the activity of an Rh catalyst for hydrogen evolution based on the [Cp*Rh] motif (Cp* = η5-pentamethylcyclopentadienyl). Specifically, we investigate why a bipyridyl (bpy) ligand leads to H2 generation but diphenylphosphino-based (dpp) ligands do not. We compare the full ligands to simplified models and systematically vary structural features to ascertain their effect on the reaction energy of each catalytic step. The calculations based on density functional theory show that the main effect on reactivity is the choice of linker atom, followed by its coordination. In particular, P stabilizes the intermediate Rh-hydride species by donating electron density to the Rh, thus inhibiting the reaction toward H2 generation. Conversely, N, a more electron-withdrawing center, favors H2 generation at the price of destabilizing the hydride intermediate, which cannot be isolated experimentally and makes determining the mechanism of this reaction more difficult. We also find that the steric effects of bulky substituents on the main ligand scaffold can lead to large effects on the reactivity, which may be challenging to fine-tune. On the other hand, structural features like the bite angle of the bidentate ligand have a much smaller impact on reactivity. Therefore, we propose that the choice of linker atom is key for the catalytic activity of this species, which can be further fine-tuned by a proper choice of electron-directing groups on the ligand scaffold.
Collapse
Affiliation(s)
- Ty Balduf
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - James D Blakemore
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| | - Marco Caricato
- Department of Chemistry, University of Kansas, 1567 Irving Hill Road, Lawrence, Kansas 66045, United States
| |
Collapse
|
6
|
Matsubara Y, Ishitani O. Photochemical formation of hydride using transition metal complexes and its application to photocatalytic reduction of the coenzyme NAD(P)+ and its model compounds. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Chang ET, Green DB, Brereton KR. Microwave-assisted synthesis of pentamethylcyclopentadienyl iridium dihalide dimers. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
8
|
Stratakes BM, Wells KA, Kurtz DA, Castellano FN, Miller AJM. Photochemical H 2 Evolution from Bis(diphosphine)nickel Hydrides Enables Low-Overpotential Electrocatalysis. J Am Chem Soc 2021; 143:21388-21401. [PMID: 34878278 DOI: 10.1021/jacs.1c10628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecules capable of both harvesting light and forming new chemical bonds hold promise for applications in the generation of solar fuels, but such first-row transition metal photoelectrocatalysts are lacking. Here we report nickel photoelectrocatalysts for H2 evolution, leveraging visible-light-driven photochemical H2 evolution from bis(diphosphine)nickel hydride complexes. A suite of experimental and theoretical analyses, including time-resolved spectroscopy and continuous irradiation quantum yield measurements, led to a proposed mechanism of H2 evolution involving a short-lived singlet excited state that undergoes homolysis of the Ni-H bond. Thermodynamic analyses provide a basis for understanding and predicting the observed photoelectrocatalytic H2 evolution by a 3d transition metal based catalyst. Of particular note is the dramatic change in the electrochemical overpotential: in the dark, the nickel complexes require strong acids and therefore high overpotentials for electrocatalysis; but under illumination, the use of weaker acids at the same applied potential results in a more than 500 mV improvement in electrochemical overpotential. New insight into first-row transition metal hydride photochemistry thus enables photoelectrocatalytic H2 evolution without electrochemical overpotential (at the thermodynamic potential or 0 mV overpotential). This catalyst system does not require sacrificial chemical reductants or light-harvesting semiconductor materials and produces H2 at rates similar to molecular catalysts attached to silicon.
Collapse
Affiliation(s)
- Bethany M Stratakes
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Kaylee A Wells
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Daniel A Kurtz
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Felix N Castellano
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, United States
| | - Alexander J M Miller
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
9
|
Determining the Overpotential of Electrochemical Fuel Synthesis Mediated by Molecular Catalysts: Recommended Practices, Standard Reduction Potentials, and Challenges. ChemElectroChem 2021. [DOI: 10.1002/celc.202100576] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|