1
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 63] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
2
|
Lam PM, John A. Molybdenum Catalyzed Deoxydehydration of Aliphatic Glycols Under Microwave Irradiation. J Organomet Chem 2023. [DOI: 10.1016/j.jorganchem.2023.122705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Yamaguchi K, Nakagawa Y, Li C, Yabushita M, Tomishige K. Utilization of Ni as a Non-Noble-Metal Co-catalyst for Ceria-Supported Rhenium Oxide in Combination of Deoxydehydration and Hydrogenation of Vicinal Diols. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kosuke Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi980-0845, Japan
| | - Congcong Li
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi980-0845, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai980-8577, Japan
| |
Collapse
|
4
|
Gao G, Zhao Z, Wang J, Xi Y, Sun P, Li F. Boosting chiral carboxylic acid hydrogenation by tuning metal-MO -support interaction in Pt-ReO /TiO2 catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64021-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Yamaguchi K, Cao J, Betchaku M, Nakagawa Y, Tamura M, Nakayama A, Yabushita M, Tomishige K. Deoxydehydration of Biomass-Derived Polyols Over Silver-Modified Ceria-Supported Rhenium Catalyst with Molecular Hydrogen. CHEMSUSCHEM 2022; 15:e202102663. [PMID: 35261197 DOI: 10.1002/cssc.202102663] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/27/2022] [Indexed: 06/14/2023]
Abstract
Olefin production from polyols via deoxydehydration (DODH) was carried out over Ag-modified CeO2 -supported heterogeneous Re catalysts with H2 as a reducing agent. Both high DODH activity and low hydrogenation ability for C=C bonds were observed in the reaction of erythritol, giving a 1,3-butadiene yield of up to 90 % under "solvent-free" conditions. This catalyst is applicable to other substrates such as methyl glycosides (methyl α-fucopyranoside: 91 % yield of DODH product; methyl β-ribofuranoside: 88 % yield), which were difficult to be converted to the DODH products over the DODH catalysts reported previously. ReOx -Ag/CeO2 was reused 3 times without a decrease of activity or selectivity after calcination as regeneration. Although the transmission electron microscopy energy-dispersive X-ray spectroscopy and X-ray absorption fine structure analyses showed that Re species were highly dispersed and Ag was present as metal particles with various sizes from well-dispersed species (<1 nm) to around 5 nm particles, the catalysts prepared from size-controlled Ag nanoparticles showed similar performance, indicating that the catalytic performance is insensitive to the Ag particle size.
Collapse
Affiliation(s)
- Kosuke Yamaguchi
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Ji Cao
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Mii Betchaku
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Yoshinao Nakagawa
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| | - Masazumi Tamura
- Research Center for Artificial Photosynthesis, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Akira Nakayama
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Mizuho Yabushita
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Keiichi Tomishige
- Department of Applied Chemistry, Graduate School of Engineering, Tohoku University, Aoba 6-6-07, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
- Research Center for Rare Metal and Green Innovation, Tohoku University, Aoba 468-1, Aramaki, Aoba-ku, Sendai, Miyagi, 980-0845, Japan
| |
Collapse
|
6
|
Li S, Jin L, Wang H, Wei X, Li W, Liu Q, Zhang X, Chen L, Ma L, Zhang Q. Tungsten oxide decorated silica-supported iridium catalysts combined with HZSM-5 toward the selective conversion of cellulose to C 6 alkanes. BIORESOURCE TECHNOLOGY 2022; 347:126403. [PMID: 34826560 DOI: 10.1016/j.biortech.2021.126403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Herein, WOx-decorated Ir/SiO2 (W/Ir = 0.06) and HZSM-5 were coupled to selectively convert microcrystalline cellulose (MCC) into C6 alkanes. A 92.8% yield of liquid alkanes including an 85.3% yield of C6 alkanes was produced at 210 °C. Cellulose hydrolysis, glucose hydrogenation and sorbitol hydrodeoxygenation were integrated to produce alkanes via a sorbitol route. Ir-WOx/SiO2 showed high performance for hydrogenation and hydrodeoxygenation reactions after hydrolysis catalyzed by HZSM-5. The intimate contact between WOx and Ir enhanced the synergistic interaction through the electron transfer from Ir to WOx. The interaction strengthened the reduction capability of Ir for hydrogenations, as well as improved the adsorption and activation of C-O bonds on reduced WOx for deoxygenations. The monotungstate WOx species provided moderate Lewis acids to cooperate with Ir to accelerate hydrodeoxygenations with alleviated retro-aldol condensation to yield more C6 alkanes.
Collapse
Affiliation(s)
- Song Li
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Lele Jin
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China; Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 233022, PR China
| | - Haiyong Wang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xiangqian Wei
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 233022, PR China
| | - Wenzhi Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 233022, PR China
| | - Qiying Liu
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, PR China
| | - Xinghua Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qi Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
7
|
Hacatrjan S, Liu L, Gan J, Nakagawa Y, Cao J, Yabushita M, Tamura M, Tomishige K. Titania-supported molybdenum oxide combined with Au nanoparticles as hydrogen-driven deoxydehydration catalyst of diol compounds. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02144c] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A heterogenous catalyst for deoxydehydration (DODH) reaction was developed using less expensive Mo than Re as the active center. Combination of Mo with anatase-rich TiO2 and Au as the support...
Collapse
|
8
|
Jentoft FC. Transition metal-catalyzed deoxydehydration: missing pieces of the puzzle. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02083h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Deoxydehydration (DODH) is a transformation that converts a vicinal diol into an olefin with the help of a sacrificial reductant.
Collapse
Affiliation(s)
- Friederike C. Jentoft
- Department of Chemical Engineering, University of Massachusetts Amherst, 686 North Pleasant Street, Amherst, MA 01003-9303, USA
| |
Collapse
|
9
|
Gothe ML, Silva KLC, Figueredo AL, Fiorio JL, Rozendo J, Manduca B, Simizu V, Freire RS, Garcia MAS, Vidinha P. Rhenium – A Tuneable Player in Tailored Hydrogenation Catalysis. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Maitê L. Gothe
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Karla L. C. Silva
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Adolfo L. Figueredo
- Nucleus of Education and Research in Oil and Gas Department of Chemical Engineering Federal University of Rio Grande do Norte Av Senador Salgado Filho Natal 59078-970 Brazil
| | - Jhonatan L. Fiorio
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Jennifer Rozendo
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Bruno Manduca
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Vinício Simizu
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Renato S. Freire
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| | - Marco A. S. Garcia
- Department of Chemistry Federal University of Maranhao Avenida dos Portugueses 1966 São Luís 65080-805 Brazil
| | - Pedro Vidinha
- Institute of Chemistry University of Sao Paulo Av Prof Lineu Prestes 748 Sao Paulo 05508-000 Brazil
| |
Collapse
|
10
|
Abstract
In this study, we elucidate the reaction kinetics for the simultaneous hydrodeoxygenation of xylitol to 1,2-dideoxypentitol and 1,2,5-pentanetriol over a ReOx-Pd/CeO2 (2.0 weight% Re, 0.30 weight% Pd) catalyst. The reaction was determined to be a zero-order reaction with respect to xylitol. The activation energy was elucidated through an Arrhenius relationship as well as non-Arrhenius kinetics. The Arrhenius relationship was investigated at 150–170 °C and a constant H2 pressure of 10 bar resulting in an activation energy of 48.7 ± 10.5 kJ/mol. The investigation of non-Arrhenius kinetics was conducted at 120–170 °C and a sub-Arrhenius relation was elucidated with activation energy being dependent on temperature, and ranging from 10.2–51.8 kJ/mol in the temperature range investigated. Internal and external mass transfer were investigated through evaluating the Weisz–Prater criterion and the effect of varying stirring rate on the reaction rate, respectively. There were no internal or external mass transfer limitations present in the reaction.
Collapse
|