1
|
Ilbeygi H, Jaafar J. Recent Progress on Functionalized Nanoporous Heteropoly Acids: From Synthesis to Applications. CHEM REC 2024; 24:e202400043. [PMID: 38874111 DOI: 10.1002/tcr.202400043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Functionalized nanoporous heteropoly acids (HPAs) have garnered significant attention in recent years due to their enhanced surface area and porosity, as well as their potential for low-cost regeneration compared to bulk materials. This review aims to provide an overview of the recent advancements in the synthesis and applications of functionalized HPAs. We begin by introducing the fundamental properties of HPAs and their unique structure, followed by a comprehensive overview of the various approaches employed for the synthesis of functionalized HPAs, including salts, anchoring onto supports, and implementing mesoporous silica sieves. The potential applications of functionalized HPAs in various fields are also discussed, highlighting their boosted performance in a wide range of applications. Finally, we address the current challenges and present future prospects in the development of functionalized HPAs, particularly in the context of mesoporous HPAs. This review aims to provide a comprehensive summary of the recent progress in the field, highlighting the significant advancements made in the synthesis and applications of functionalized HPAs.
Collapse
Affiliation(s)
- Hamid Ilbeygi
- Battery Research and Innovation Hub, Institute of Frontier Materials, Deakin University, Burwood, VIC 3125, Australia
- ARC Research Hub for Integrated Devices for End-user Analysis at Low-levels (IDEAL), Future Industries Institute, STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Juhana Jaafar
- N29a, Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| |
Collapse
|
2
|
Wu J, Ye R, Xu DJ, Wan L, Reina TR, Sun H, Ni Y, Zhou ZF, Deng X. Emerging natural and tailored perovskite-type mixed oxides–based catalysts for CO2 conversions. Front Chem 2022; 10:961355. [PMID: 35991607 PMCID: PMC9388861 DOI: 10.3389/fchem.2022.961355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid economic and societal development have led to unprecedented energy demand and consumption resulting in the harmful emission of pollutants. Hence, the conversion of greenhouse gases into valuable chemicals and fuels has become an urgent challenge for the scientific community. In recent decades, perovskite-type mixed oxide-based catalysts have attracted significant attention as efficient CO2 conversion catalysts due to the characteristics of both reversible oxygen storage capacity and stable structure compared to traditional oxide-supported catalysts. In this review, we hand over a comprehensive overview of the research for CO2 conversion by these emerging perovskite-type mixed oxide-based catalysts. Three main CO2 conversions, namely reverse water gas shift reaction, CO2 methanation, and CO2 reforming of methane have been introduced over perovskite-type mixed oxide-based catalysts and their reaction mechanisms. Different approaches for promoting activity and resisting carbon deposition have also been discussed, involving increased oxygen vacancies, enhanced dispersion of active metal, and fine-tuning strong metal-support interactions. Finally, the current challenges are mooted, and we have proposed future research prospects in this field to inspire more sensational breakthroughs in the material and environment fields.
Collapse
Affiliation(s)
- Juan Wu
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, China
- *Correspondence: Runping Ye, ; Zhang-Feng Zhou, ; Xiaonan Deng,
| | - Dong-Jie Xu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Lingzhong Wan
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Tomas Ramirez Reina
- Department of Chemical and Process Engineering, University of Surrey, Guildford, United Kingdom
- Department of Inorganic Chemistry and Materials Sciences Institute, University of Seville-CSIC, Seville, Spain
| | - Hui Sun
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Ying Ni
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Zhang-Feng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- *Correspondence: Runping Ye, ; Zhang-Feng Zhou, ; Xiaonan Deng,
| | - Xiaonan Deng
- Institute of Cotton, Anhui Academy of Agricultural Sciences, Hefei, China
- *Correspondence: Runping Ye, ; Zhang-Feng Zhou, ; Xiaonan Deng,
| |
Collapse
|
3
|
Ishikawa S, Ikeda T, Koutani M, Yasumura S, Amakawa K, Shimoda K, Jing Y, Toyao T, Sadakane M, Shimizu KI, Ueda W. Oxidation Catalysis over Solid-State Keggin-Type Phosphomolybdic Acid with Oxygen Defects. J Am Chem Soc 2022; 144:7693-7708. [PMID: 35438484 DOI: 10.1021/jacs.2c00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Keggin-type phosphomolybdic acid (PMo12O40), treated with pyridine (Py), forms a crystalline material (PyPMo-HT) following heat treatment under an inert gas flow at ∼420 °C. Although this material is known to have attractive catalytic properties for gas-phase oxidation, the origin of this catalytic activity requires clarification. In this study, we investigated the crystal structure of PyPMo-HT. PyPMo-HT comprises a one-dimensional array of Keggin units and pyridinium cations (HPy), with an HPy/Keggin unit ratio of ∼1.0. Two oxygen atoms were removed from the Keggin unit during crystal structure transformation, which resulted in an electron being localized on the Mo atom in close contact with the adjacent Keggin unit. Upon the introduction of molecular oxygen, electron transfer from this Mo atom resulted in the formation of an electrophilic oxygen species that bridged two Keggin units. The electrophilic oxygen species acted as a catalytically active oxygen species, as confirmed by the selective oxidation of propylene. PyPMo-HT showed excellent catalytic activity for the selective oxidation of methacrolein, with the methacrylic acid yield being superior to that obtained with PMo12O40 and comparable to that obtained with an industrial Keggin-type polyoxometalate (POM) catalyst. The oxidation catalysis observed over PyPMo-HT provides a deeper understanding of POM-based industrial catalytic processes.
Collapse
Affiliation(s)
- Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Takuji Ikeda
- Research Institute for Chemical Process Technology, National Institute of Advanced Industrial Science and Technology (AIST), 4-2-1 Nigatake, Sendai 983-8551, Japan
| | - Maki Koutani
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Shunsaku Yasumura
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Kazuhiko Amakawa
- Department of Environmental Chemistry and Engineering, Tokyo Institute of Technology, Nagatsuta-cho, Midori-ku, Yokohama 226-0087, Japan
| | - Kosuke Shimoda
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan
| | - Masahiro Sadakane
- Department of Applied Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8527, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-ku, Sapporo 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 615-8520, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
4
|
Greco R, Tiburcio-Fortes E, Fernandez A, Marini C, Vidal-Moya A, Oliver-Meseguer J, Armentano D, Pardo E, Ferrando-Soria J, Leyva-Pérez A. MOF-stabilized perfluorinated palladium cages catalyze the additive-free aerobic oxidation of aliphatic alcohols to acids. Chemistry 2021; 28:e202103781. [PMID: 34929061 DOI: 10.1002/chem.202103781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 11/08/2022]
Abstract
Extremely high electrophilic metal complexes, composed by a metal cation and very electron poor σ-donor ancillary ligands, are expected to be privileged catalysts for oxidation reactions in organic chemistry. However, their low lifetime prevents any use in catalysis. Here we show the synthesis of fluorinated pyridine-Pd 2+ coordinate cages within the channels of an anionic tridimensional metal organic framework (MOF), and their use as efficient metal catalysts for the aerobic oxidation of aliphatic alcohols to carboxylic acids without any additive. Mechanistic studies strongly support that the MOF-stabilized coordination cage with perfluorinated ligands unleashes the full electrophilic potential of Pd 2+ to dehydrogenate primary alcohols, without any base, and also to activate O 2 for the radical oxidation to the aldehyde intermediate. This study opens the door to design catalytic perfluorinated complexes for challenging organic transformations, where an extremely high electrophilic metal site is required.
Collapse
Affiliation(s)
- Rossella Greco
- CSIC: Consejo Superior de Investigaciones Cientificas, ITQ, SPAIN
| | | | | | | | | | | | | | | | | | - Antonio Leyva-Pérez
- CSIC, Instituto de Tecnologia Quimica, Avda. de los Naranjos S/N, 46022, Valencia, SPAIN
| |
Collapse
|
5
|
Tao M, Ishikawa S, Zhang Z, Murayama T, Inomata Y, Kamiyama A, Nakaima I, Jing Y, Mine S, Shimoda K, Toyao T, Shimizu KI, Ueda W. Synthesis of Zeolitic Ti, Zr-Substituted Vanadotungstates and Investigation of Their Catalytic Activities for Low Temperature NH 3-SCR. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04086] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Meilin Tao
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Zhenxin Zhang
- School of Material Science and Chemical Engineering, Ningbo University, Fenghua Road 818, Ningbo, Zhejiang 315211, P. R. China
| | - Toru Murayama
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yusuke Inomata
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Akiho Kamiyama
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Ichika Nakaima
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-Ku, Sapporo 001-0021, Japan
| | - Shinya Mine
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-Ku, Sapporo 001-0021, Japan
| | - Kosuke Shimoda
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-Ku, Sapporo 001-0021, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-Ku, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto Daigaku Katsura,
Nishikyo-ku, Kyoto 615-8520, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10 Kita-Ku, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto Daigaku Katsura,
Nishikyo-ku, Kyoto 615-8520, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
6
|
Ishikawa S, Yamada Y, Kashio N, Noda N, Shimoda K, Hayashi M, Murayama T, Ueda W. True Catalytically Active Structure in Mo–V-Based Mixed Oxide Catalysts for Selective Oxidation of Acrolein. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01570] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Satoshi Ishikawa
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yudai Yamada
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Naoki Kashio
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Nagisa Noda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Kosuke Shimoda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Mio Hayashi
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Toru Murayama
- Research Center for Gold Chemistry, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| |
Collapse
|
7
|
Shimoda K, Ishikawa S, Matsumoto K, Miyasawa M, Takebe M, Matsumoto R, Lee S, Ueda W. Nb−V Mixed Oxide with a Random Assembly of Pentagonal Units: A Catalyst for Oxidative Dehydrogenation of Ethane and Propane. ChemCatChem 2021. [DOI: 10.1002/cctc.202100463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Kosuke Shimoda
- Department of Material and Life Chemistry Faculty of Engineering Kanagawa University 3–27 Rokkakubashi Kanagawa-ku Yokohama 221-8686 Japan
| | - Satoshi Ishikawa
- Department of Material and Life Chemistry Faculty of Engineering Kanagawa University 3–27 Rokkakubashi Kanagawa-ku Yokohama 221-8686 Japan
| | - Katsuya Matsumoto
- Department of Material and Life Chemistry Faculty of Engineering Kanagawa University 3–27 Rokkakubashi Kanagawa-ku Yokohama 221-8686 Japan
| | - Mai Miyasawa
- Department of Material and Life Chemistry Faculty of Engineering Kanagawa University 3–27 Rokkakubashi Kanagawa-ku Yokohama 221-8686 Japan
| | - Marino Takebe
- Department of Material and Life Chemistry Faculty of Engineering Kanagawa University 3–27 Rokkakubashi Kanagawa-ku Yokohama 221-8686 Japan
| | - Riku Matsumoto
- Department of Material and Life Chemistry Faculty of Engineering Kanagawa University 3–27 Rokkakubashi Kanagawa-ku Yokohama 221-8686 Japan
| | - Syutoku Lee
- Department of Material and Life Chemistry Faculty of Engineering Kanagawa University 3–27 Rokkakubashi Kanagawa-ku Yokohama 221-8686 Japan
| | - Wataru Ueda
- Department of Material and Life Chemistry Faculty of Engineering Kanagawa University 3–27 Rokkakubashi Kanagawa-ku Yokohama 221-8686 Japan
| |
Collapse
|
8
|
Liu Y, Twombly A, Dang Y, Mirich A, Suib SL, Deshlahra P. Roles of Enhancement of C−H Activation and Diminution of C−O Formation Within M1‐Phase Pores in Propane Selective Oxidation. ChemCatChem 2020. [DOI: 10.1002/cctc.202001642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yilang Liu
- Department of Chemical and Biological Engineering Tufts University Medford MA 02155 USA
| | - Adam Twombly
- Department of Chemical and Biological Engineering Tufts University Medford MA 02155 USA
| | - Yanliu Dang
- Institute of Materials Science University of Connecticut Storrs CT 06269 USA
| | - Anne Mirich
- Institute of Materials Science University of Connecticut Storrs CT 06269 USA
| | - Steven L. Suib
- Institute of Materials Science University of Connecticut Storrs CT 06269 USA
- Department of Chemistry University of Connecticut Storrs CT 06269 USA
| | - Prashant Deshlahra
- Department of Chemical and Biological Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|