1
|
Chen Y, Zhang C, Yao D, Gazit OM, Zhong Z. Generating Strong Metal-Support Interaction and Oxygen Vacancies in Cu/MgAlO x Catalysts by CO 2 Treatment for Enhanced CO 2 Hydrogenation to Methanol. ACS APPLIED MATERIALS & INTERFACES 2025; 17:3404-3417. [PMID: 39749901 DOI: 10.1021/acsami.4c18818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Strong metal-support interactions (SMSIs) are essential for optimizing the performance of supported metal catalysts by tuning the metal-oxide interface structures. This study explores the hydrogenation of CO2 to methanol over Cu-supported catalysts, focusing on the synergistic effects of strong metal-support interaction (SMSI) and oxygen vacancies introduced by the CO2 treatment to the catalysts on the catalytic performance. Cu nanoparticles were immobilized on Mg-Al layered double oxide (LDO) supports and modified with nitrate ions to promote oxygen vacancy generation. Further calcination in a 15% CO2/85% N2 atmosphere at various temperatures not only resulted in the formation of SMSI and electronic metal-support interaction (EMSI) between Cu and MgO, but also generated abundant oxygen vacancies on MgO. The optimized 7.5%Cu/MA-C700 catalyst (Cu supported on MgAl-LDO treated in CO2 at 700 °C) exhibited significantly higher methanol production and turnover frequency compared to the air-calcined counterparts. In situ FTIR studies further revealed that oxygen vacancies led to the formation of more monodentate formate species, thus enhancing methanol production. This research provides a novel approach to engineering the catalyst interface structure and the interaction between the active metal and the support, particularly for the irreducible metal oxide support, for efficient hydrogenation of CO2 to methanol.
Collapse
Affiliation(s)
- Yuzhen Chen
- Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Chenchen Zhang
- Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Defu Yao
- Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Oz M Gazit
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| | - Ziyi Zhong
- Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Guangdong 515063, China
- Wolfson Faculty of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel
| |
Collapse
|
2
|
Li Y, Bai X, Yuan D, Yu C, San X, Guo Y, Zhang L, Ye J. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat Commun 2023; 14:3171. [PMID: 37264007 DOI: 10.1038/s41467-023-38889-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023] Open
Abstract
Cu-based nanocatalysts are the cornerstone of various industrial catalytic processes. Synergistically strengthening the catalytic stability and activity of Cu-based nanocatalysts is an ongoing challenge. Herein, the high-entropy principle is applied to modify the structure of Cu-based nanocatalysts, and a PVP templated method is invented for generally synthesizing six-eleven dissimilar elements as high-entropy two-dimensional (2D) materials. Taking 2D Cu2Zn1Al0.5Ce5Zr0.5Ox as an example, the high-entropy structure not only enhances the sintering resistance from 400 °C to 800 °C but also improves its CO2 hydrogenation activity to a pure CO production rate of 417.2 mmol g-1 h-1 at 500 °C, 4 times higher than that of reported advanced catalysts. When 2D Cu2Zn1Al0.5Ce5Zr0.5Ox are applied to the photothermal CO2 hydrogenation, it exhibits a record photochemical energy conversion efficiency of 36.2%, with a CO generation rate of 248.5 mmol g-1 h-1 and 571 L of CO yield under ambient sunlight irradiation. The high-entropy 2D materials provide a new route to simultaneously achieve catalytic stability and activity, greatly expanding the application boundaries of photothermal catalysis.
Collapse
Affiliation(s)
- Yaguang Li
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- College of Mechanical and Electrical Engineering, Key Laboratory Intelligent Equipment and New Energy Utilization of Livestock and Poultry Breeding, Hebei Agricultural University, Baoding, 071001, China.
| | - Xianhua Bai
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Dachao Yuan
- College of Mechanical and Electrical Engineering, Key Laboratory Intelligent Equipment and New Energy Utilization of Livestock and Poultry Breeding, Hebei Agricultural University, Baoding, 071001, China
| | - Chenyang Yu
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xingyuan San
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yunna Guo
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| | - Jinhua Ye
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.
| |
Collapse
|
3
|
Zindrou A, Deligiannakis Y. Quantitative In Situ Monitoring of Cu-Atom Release by Cu 2O Nanocatalysts under Photocatalytic CO 2 Reduction Conditions: New Insights into the Photocorrosion Mechanism. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111773. [PMID: 37299676 DOI: 10.3390/nano13111773] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Cu2O is among the most promising photocatalysts for CO2 reduction, however its photocorrosion remains a standalone challenge. Herein, we present an in situ study of the release of Cu ions from Cu2O nanocatalysts under photocatalytic conditions in the presence of HCO3 as a catalytic substrate in H2O. The Cu-oxide nanomaterials were produced by Flame Spray Pyrolysis (FSP) technology. Using Electron Paramagnetic Resonance (EPR) spectroscopy in tandem with analytical Anodic Stripping Voltammetry (ASV), we monitored in situ the Cu2+ atom release from the Cu2O nanoparticles in comparison with CuO nanoparticles under photocatalytic conditions. Our quantitative, kinetic data show that light has detrimental effect on the photocorrosion of Cu2O and ensuing Cu2+ ion release in the H2O solution, up to 15.7% of its mass. EPR reveals that HCO3 acts as a ligand of the Cu2+ ions, promoting the liberation of {HCO3-Cu} complexes in solution from Cu2O, up to 27% of its mass. HCO3 alone exerted a marginal effect. XRD data show that under prolonged irradiation, part of Cu2+ ions can reprecipitate on the Cu2O surface, creating a passivating CuO layer that stabilizes the Cu2O from further photocorrosion. Including isopropanol as a hole scavenger has a drastic effect on the photocorrosion of Cu2O nanoparticles and suppresses the release of Cu2+ ions to the solution. Methodwise, the present data exemplify that EPR and ASV can be useful tools to help quantitatively understand the solid-solution interface photocorrosion phenomena for Cu2O.
Collapse
Affiliation(s)
- Areti Zindrou
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| | - Yiannis Deligiannakis
- Laboratory of Physical Chemistry of Materials & Environment, Department of Physics, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
4
|
Oxygenated Hydrocarbons from Catalytic Hydrogenation of Carbon Dioxide. Catalysts 2023. [DOI: 10.3390/catal13010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Once fundamental difficulties such as active sites and selectivity are fully resolved, metal-free catalysts such as 3D graphene or carbon nanotubes (CNT) are very cost-effective substitutes for the expensive noble metals used for catalyzing CO2. A viable method for converting environmental wastes into useful energy storage or industrial wealth, and one which also addresses the environmental and energy problems brought on by emissions of CO2, is CO2 hydrogenation into hydrocarbon compounds. The creation of catalytic compounds and knowledge about the reaction mechanisms have received considerable attention. Numerous variables affect the catalytic process, including metal–support interaction, metal particle sizes, and promoters. CO2 hydrogenation into different hydrocarbon compounds like lower olefins, alcoholic composites, long-chain hydrocarbon composites, and fuels, in addition to other categories, have been explained in previous studies. With respect to catalyst design, photocatalytic activity, and the reaction mechanism, recent advances in obtaining oxygenated hydrocarbons from CO2 processing have been made both through experiments and through density functional theory (DFT) simulations. This review highlights the progress made in the use of three-dimensional (3D) nanomaterials and their compounds and methods for their synthesis in the process of hydrogenation of CO2. Recent advances in catalytic performance and the conversion mechanism for CO2 hydrogenation into hydrocarbons that have been made using both experiments and DFT simulations are also discussed. The development of 3D nanomaterials and metal catalysts supported on 3D nanomaterials is important for CO2 conversion because of their stability and the ability to continuously support the catalytic processes, in addition to the ability to reduce CO2 directly and hydrogenate it into oxygenated hydrocarbons.
Collapse
|
5
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
6
|
The Development of Uncalcined Cu-Based Catalysts by Liquid Reduction Method for CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04093-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Cored J, Mazarío J, Cerdá-Moreno C, Lustemberg PG, Ganduglia-Pirovano MV, Domine ME, Concepción P. Enhanced Methanol Production over Non-promoted Cu–MgO–Al 2O 3 Materials with Ex-solved 2 nm Cu Particles: Insights from an Operando Spectroscopic Study. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jorge Cored
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Jaime Mazarío
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Cristina Cerdá-Moreno
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Pablo G. Lustemberg
- Instituto de Catálisis y Petroleoquímica, CSIC, C/Marie Curie 2, 28049 Madrid, Spain
- Instituto de Fisica Rosario (IFIR), CONICET-UNR, Bv. 27 de Febrero 210bis, 2000EZP Rosario, Santa Fe, Argentina
| | | | - Marcelo E. Domine
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
8
|
Zhang G, Liu M, Fan G, Zheng L, Li F. Efficient Role of Nanosheet-Like Pr 2O 3 Induced Surface-Interface Synergistic Structures over Cu-Based Catalysts for Enhanced Methanol Production from CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2768-2781. [PMID: 34994552 DOI: 10.1021/acsami.1c20056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In a complex heterogeneous metal-catalyzed reaction process, unique cooperative effects between metal sites and surface-interface active sites, as well as favorable synergy between surface-interface active sites, can play crucial roles in improving their catalytic performances. In this work, a ZnO-modified Cu-based catalyst over defect-rich Pr2O3 nanosheets for high-efficiency CO2 hydrogenation to produce methanol was successfully constructed. It was demonstrated that an as-fabricated nanosheet-like Cu-based catalyst presented several structural advantages including the formation of highly dispersive Cu0 sites and the coexistence of abundant defective Pr3+-Vo-Pr3+ structures (Vo: oxygen vacancy) and interfacial Cu-O-Pr sites. Combining structural characterization and catalytic reaction results with density functional theory calculations, it was clearly unveiled that the synergy between surface defective structures and Cu-Pr2O3 interfaces over the catalyst remarkably promoted the adsorption of CO2 and CO intermediate, thus boosting the CO2 hydrogenation simultaneously via both the formate intermediate pathway and the intense reverse water-gas shift reaction-derived CO hydrogenation pathway, along with a high space-time yield of methanol of 0.395 gMeOH·gcat-1·h-1 under mild reaction conditions (260 °C and 3.0 MPa). The study provides a new strategy to construct high-performance Cu-based catalysts for high-efficiency CO2 hydrogenation to produce methanol and a deep understanding of the promotional roles of synergy between surface-interface active sites in the CO2 hydrogenation.
Collapse
Affiliation(s)
- Guangcheng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mengran Liu
- Beijing Institute of Aerospace Testing Technology, Beijing Key Laboratory of Research and Application for Aerospace Green Propellants, Beijing 100074, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
9
|
Cui Z, Meng S, Yi Y, Jafarzadeh A, Li S, Neyts EC, Hao Y, Li L, Zhang X, Wang X, Bogaerts A. Plasma-Catalytic Methanol Synthesis from CO2 Hydrogenation over a Supported Cu Cluster Catalyst: Insights into the Reaction Mechanism. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04678] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zhaolun Cui
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Shengyan Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yanhui Yi
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Amin Jafarzadeh
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Shangkun Li
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Erik Cornelis Neyts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| | - Yanpeng Hao
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
| | - Licheng Li
- School of Electric Power Engineering, South China University of Technology, Guangzhou 510630, China
| | - Xiaoxing Zhang
- School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Xinkui Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk-Antwerp BE-2610, Belgium
| |
Collapse
|
10
|
Roy D, Mandal SC, Pathak B. Machine Learning-Driven High-Throughput Screening of Alloy-Based Catalysts for Selective CO 2 Hydrogenation to Methanol. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56151-56163. [PMID: 34787997 DOI: 10.1021/acsami.1c16696] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The revolutionary development of machine learning and data science and exploration of its application in material science are huge achievements of the scientific community in the past decade. In this work, we have reported an efficient approach of machine learning-aided high-throughput screening for finding selective earth-abundant high-entropy alloy-based catalysts for CO2 to methanol formation using a machine learning algorithm and microstructure model. For this, we have chosen earth-abundant Cu, Co, Ni, Zn, and Mg metals to form various alloy-based compositions (bimetallic, trimetallic, tetrametallic, and high-entropy alloys) for selective CO2 reduction reaction toward CH3OH. Since there are several possible surface microstructures for different alloys, we have used machine learning along with DFT calculations for high-throughput screening of the catalysts. In this study, the stability of various 8-atom fcc periodic (111) surface unit cells has been calculated using the atomic-size difference factor (δ) as well as the ratio taken from Gibbs free energy of mixing (Ω). Thinking about the simplicity and accuracy, microstructure models by considering the neighboring atoms of the adsorption sites and others as Cu atoms have been considered for different adsorption sites (on-top, bridge, and hollow-hcp). Moreover, the adsorption energies of the *H, *O, *CO, *HCO, *H2CO, and *H3CO intermediates have been predicted using the best fitted algorithm of the training set. The predicted adsorption energies have been screened based on the pure Cu adsorption energy. Furthermore, the screened catalysts have been correlated among different adsorption site microstructures. At the end, we were able to find seven active catalysts, among which two catalysts are CuCoNiZn-based tetrametallic, three catalysts are CuNiZn-based trimetallic, and two catalysts are CuCoZn-based trimetallic alloys. Hence, this work demonstrates not an ultimate but an efficient approach for finding new product-selective catalysts, and we expect that it can be convenient for other similar types of reactions in forthcoming days.
Collapse
Affiliation(s)
- Diptendu Roy
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Shyama Charan Mandal
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| |
Collapse
|
11
|
Tsuji Y, Yoshioka Y, Hori M, Yoshizawa K. Exploring Metal Cluster Catalysts Using Swarm Intelligence: Start with Hydrogen Adsorption. Top Catal 2021. [DOI: 10.1007/s11244-021-01512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|