1
|
Ezenwa S, Gounder R. Advances and challenges in designing active site environments in zeolites for Brønsted acid catalysis. Chem Commun (Camb) 2024; 60:12118-12143. [PMID: 39344420 DOI: 10.1039/d4cc04728a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Zeolites contain proton active sites in diverse void environments that stabilize the reactive intermediates and transition states formed in converting hydrocarbons and oxygenates to chemicals and energy carriers. The catalytic diversity that exists among active sites in voids of varying sizes and shapes, even within a given zeolite topology, has motivated research efforts to position and quantify active sites within distinct voids (synthesis-structure) and to link active site environment to catalytic behavior (structure-reactivity). This Feature Article describes advances and challenges in controlling the position of framework Al centers and associated protons within distinct voids during zeolite synthesis or post-synthetic modification, in identifying and quantifying distinct active site environments using characterization techniques, and in determining the influence of active site environments on catalysis. During zeolite synthesis, organic structure directing agents (SDAs) influence Al substitution at distinct lattice positions via intermolecular interactions (e.g., electrostatics, hydrogen bonding) that depend on the size, structure, and charge distribution of organic SDAs and their mobility when confined within zeolitic voids. Complementary post-synthetic strategies to alter intrapore active site distributions include the selective removal of protons by differently-sized titrants or unreactive organic residues and the selective exchange of framework heteroatoms of different reactivities, but remain limited to certain zeolite frameworks. The ability to identify and quantify active sites within distinct intrapore environments depends on the resolution with which a given characterization technique can distinguish Al T-site positions or proton environments in a given zeolite framework. For proton sites in external unconfined environments, various (post-)synthetic strategies exist to control their amounts, with quantitative methods to distinguish them from internal sites that largely depend on using stoichiometric or catalytic probes that only interact with external sites. Protons in different environments influence reactivity by preferentially stabilizing larger transition states over smaller precursor states and influence selectivity by preferentially stabilizing or destabilizing competing transition states of varying sizes that share a common precursor state. We highlight opportunities to address challenges encountered in the design of active site environments in zeolites by closely integrating precise (post-)synthetic methods, validated characterization techniques, well-defined kinetic probes, and properly calibrated theoretical models. Further advances in understanding the molecular details that underlie synthesis-structure-reactivity relationships for active site environments in zeolite catalysis can accelerate the predictive design of tailored zeolites for desired catalytic transformations.
Collapse
Affiliation(s)
- Sopuruchukwu Ezenwa
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| | - Rajamani Gounder
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
2
|
Qi L, Zhang Y, Babucci M, Chen C, Lu P, Li J, Dun C, Hoffman AS, Urban JJ, Tsapatsis M, Bare SR, Han Y, Gates BC, Bell AT. Dehydrogenation of Propane and n-Butane Catalyzed by Isolated PtZn 4 Sites Supported on Self-Pillared Zeolite Pentasil Nanosheets. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Liang Qi
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanfei Zhang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
- Department of Materials Science and Engineering, Solar Cell Technology, Uppsala University, Uppsala 75103, Sweden
| | - Cailing Chen
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Peng Lu
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jingwei Li
- Multi-Scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chaochao Dun
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| | - Adam S. Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jeffrey J. Urban
- The Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley, Berkeley, California 94720, United States
| | - Michael Tsapatsis
- Department of Chemical and Biomolecular Engineering & Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Simon R. Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yu Han
- Advanced Membranes and Porous Materials (AMPM) Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- KAUST Catalysis Center (KCC), KAUST, Thuwal 23955-6900, Saudi Arabia
| | - Bruce C. Gates
- National Engineering Laboratory for Methanol to Olefins, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Alexis T. Bell
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Foley BL, Johnson BA, Bhan A. Kinetic Evaluation of Deactivation Pathways in Methanol-to-Hydrocarbon Catalysis on HZSM-5 with Formaldehyde, Olefinic, Dieneic, and Aromatic Co-Feeds. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Brandon L. Foley
- Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, United States
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Blake A. Johnson
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota-Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|