1
|
Han X, Chen F, Li H, Ge R, Shen Q, Duan P, Sheng X, Zhang W. Reaction engineering blocks ether cleavage for synthesizing chiral cyclic hemiacetals catalyzed by unspecific peroxygenase. Nat Commun 2024; 15:1235. [PMID: 38336996 PMCID: PMC10858125 DOI: 10.1038/s41467-024-45545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Hemiacetal compounds are valuable building blocks in synthetic chemistry, but their enzymatic synthesis is limited and often hindered by the instability of hemiacetals in aqueous environments. Here, we show that this challenge can be addressed through reaction engineering by using immobilized peroxygenase from Agrocybe aegerita (AaeUPO) under neat reaction conditions, which allows for the selective C-H bond oxyfunctionalization of environmentally significant cyclic ethers to cyclic hemiacetals. A wide range of chiral cyclic hemiacetal products are prepared in >99% enantiomeric excess and 95170 turnover numbers of AaeUPO. Furthermore, by changing the reaction medium from pure organic solvent to alkaline aqueous conditions, cyclic hemiacetals are in situ transformed into lactones. Lactams are obtained under the applied conditions, albeit with low enzyme activity. These findings showcase the synthetic potential of AaeUPO and offer a practical enzymatic approach to produce chiral cyclic hemiacetals through C-H oxyfunctionalization under mild conditions.
Collapse
Affiliation(s)
- Xiaofeng Han
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Fuqiang Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Huanhuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Ge
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Qianqian Shen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
2
|
Li H, Zhang Y, Huang Y, Duan P, Ge R, Han X, Zhang W. A Simple Access to γ- and ε-Keto Arenes via Enzymatic Divergent C─H Bond Oxyfunctionalization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304605. [PMID: 37870171 PMCID: PMC10700168 DOI: 10.1002/advs.202304605] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Performing divergent C─H bond functionalization on molecules with multiple reaction sites is a significant challenge in organic chemistry. Biocatalytic oxyfunctionalization reactions of these compounds to the corresponding ketones/aldehydes are typically hindered by selectivity issues. To address these challenges, the catalytic performance of oxidoreductases is explored. The results show that combining the peroxygenase-catalyzed propargylic C─H bond oxidation with the Old Yellow Enzyme-catalyzed reduction of conjugated C─C triple bonds in one-pot enables the regio- and chemoselective oxyfunctionalization of sp3 C─H bonds that are distant from benzylic sites. This enzymatic approach yielded a variety of γ-keto arenes with diverse structural and electronic properties in yields of up to 99% and regioselectivity of 100%, which are difficult to achieve using other chemocatalysis and enzymes. By adjusting the C─C triple bond, the carbonyl group's position can be further tuned to yield ε-keto arenes. This enzymatic approach can be combined with other biocatalysts to establish new synthetic pathways for accessing various challenging divergent C─H bond functionalization reactions.
Collapse
Affiliation(s)
- Huanhuan Li
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yalan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Peigao Duan
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'an710049China
| | - Ran Ge
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Xiaofeng Han
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of Sciences32 West 7th AvenueTianjin300308China
- National Innovation Center for Synthetic Biotechnology32 West 7th AvenueTianjin300308China
| |
Collapse
|
3
|
Collaborative catalysis for solar biosynthesis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Li Y, Zhang P, Sun Z, Li H, Ge R, Sheng X, Zhang W. Peroxygenase-Catalyzed Selective Synthesis of Calcitriol Starting from Alfacalcidol. Antioxidants (Basel) 2022; 11:antiox11061044. [PMID: 35739941 PMCID: PMC9220053 DOI: 10.3390/antiox11061044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Calcitriol is an active analog of vitamin D3 and has excellent physiological activities in regulating healthy immune function. To synthesize the calcitriol compound, the concept of total synthesis is often adopted, which typically involves multiple steps and results in an overall low yield. Herein, we envisioned an enzymatic approach for the synthesis of calcitriol. Peroxygenase from Agrocybe aegerita (AaeUPO) was used as a catalyst to hydroxylate the C-H bond at the C-25 position of alfacalcidol and yielded the calcitriol in a single step. The enzymatic reaction yielded 80.3% product formation in excellent selectivity, with a turnover number up to 4000. In a semi-preparative scale synthesis, 72% isolated yield was obtained. It was also found that AaeUPO is capable of hydroxylating the C-H bond at the C-1 position of vitamin D3, thereby enabling the calcitriol synthesis directly from vitamin D3.
Collapse
Affiliation(s)
- Yuanying Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Pengpeng Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Huanhuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Ran Ge
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Correspondence: ; Tel.: +86-22-8486-6462
| |
Collapse
|
5
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
6
|
Peng Y, Chen Z, Xu J, Wu Q. Recent Advances in Photobiocatalysis for Selective Organic Synthesis. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Yongzhen Peng
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Zhichun Chen
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zhejiang University, Hangzhou 310027, P.R. China
| |
Collapse
|
7
|
Li K, Yang Q, Zhang P, Zhang W. Research Progress of Peroxygenase-Catalyzed Reactions Driven by in-situ Generation of H 2 O 2. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Li Y, Yuan B, Sun Z, Zhang W. C–H bond functionalization reactions enabled by photobiocatalytic cascades. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
9
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
10
|
Huang X, Li J, Su X, Fang K, Wang Z, Liu L, Wang H, Yang C, Wang X. Remarkable damage in talc caused by electron beam irradiation with a dose of up to 1000 kGy: lattice shrinkage in the Z- and Y-axis and corresponding intrinsic microstructural transformation process speculation. RSC Adv 2021; 11:21870-21884. [PMID: 35478784 PMCID: PMC9034090 DOI: 10.1039/d1ra04012j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
To reduce the polluted areas caused by the migration of radioactive or toxic matter, a clear understanding of soil matrix stability, especially the lattice, is essential under irradiation conditions like those of β-ray irradiation. In reality, the matrix of soil or clay is silicate, with talc being one of the most simple species with a similar structure to that matter, exhibiting "2 : 1" stacking and a complete crystal. Therefore, in this work, it was irradiated by an electron beam in air with dose up to 1000 kGy. Then, variations in lattice and the intrinsic microstructural transformation process, especially in terms of defect formation and transformation, were explored. The main results show that irradiation led to talc lattice plane shrinkage and amorphization. Shrinkage and amorphization levels in the Z-axis were more serious than those in the Y-axis. For a 1000 kGy-irradiated sample, the shrinkage level of the (002) lattice plane was close to 2% near 0.2 Å and that of (020) was close to 1.3% near 0.06 Å. Variation in the (002) lattice plane was more obvious than that of (020). The main mechanisms involve the cleavage of tetrahedral Si-O and linkage of tetrahedra and octahedra. Tetrahedral Si-O cleavage was visible, leading to serious amorphization. Nevertheless, lattice plane shrinkage, especially in the Z-axis, was mainly caused by linkage cleavage in this direction. In addition to linkage cleavage, dehydroxylation and H2O volatilization occurred, coupled with H2O radiolysis. Nevertheless, those factors are secondary to lattice variation.
Collapse
Affiliation(s)
- Xiaojun Huang
- School of Textile Science and Engineering, Wuhan Textile University Yangguang Road No. 1, Jiangxia District Wuhan 430200 Hubei China
| | - Jiayan Li
- School of Textile Science and Engineering, Wuhan Textile University Yangguang Road No. 1, Jiangxia District Wuhan 430200 Hubei China
| | - Xiaoya Su
- School of Textile Science and Engineering, Wuhan Textile University Yangguang Road No. 1, Jiangxia District Wuhan 430200 Hubei China
| | - Ke Fang
- School of Textile Science and Engineering, Wuhan Textile University Yangguang Road No. 1, Jiangxia District Wuhan 430200 Hubei China
| | - Zishuang Wang
- School of Textile Science and Engineering, Wuhan Textile University Yangguang Road No. 1, Jiangxia District Wuhan 430200 Hubei China
| | - Lin Liu
- School of Textile Science and Engineering, Wuhan Textile University Yangguang Road No. 1, Jiangxia District Wuhan 430200 Hubei China
| | - Honglong Wang
- School of Textile Science and Engineering, Wuhan Textile University Yangguang Road No. 1, Jiangxia District Wuhan 430200 Hubei China
| | - Chenguang Yang
- School of Materials Science and Engineering, Wuhan Textile University Wuhan 430200 Hubei China
| | - Xiaoguang Wang
- School of Textile Science and Engineering, Wuhan Textile University Yangguang Road No. 1, Jiangxia District Wuhan 430200 Hubei China
| |
Collapse
|