1
|
Wang J, Liu Z, Zhao Y, Dai Z, Hua J, Zhao M. Two-dimensional phosphorus carbides (β-PC) as highly efficient metal-free electrocatalysts for lithium-sulfur batteries: a first-principles study. Phys Chem Chem Phys 2024; 26:21642-21652. [PMID: 39087322 DOI: 10.1039/d4cp01881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Li-S batteries are considered as the next-generation batteries due to their exceptional theoretical capacity. However, their practical application is hampered by the shuttling effects of lithium polysulfides (LiPSs) and the sluggish Li2S decomposition, particularly the slow conversion from Li2S2 to Li2S. Addressing these challenges, the quest for effective catalysts that can accelerate the conversion of LiPSs and enhance the performance of Li-S batteries is crucial. In this study, we explored the electrocatalytic activity of two-dimensional phosphorus carbides (β0-PC and β1-PC) in Li-S batteries based on first-principles calculations. Our findings reveal that these materials demonstrate optimal binding strengths (ranging from 1.09 to 1.83 eV) with long-chain LiPSs, effectively preventing them from dissolving into the electrolyte. Additionally, they show remarkable catalytic activity during the sulfur redox reaction (SRR), with ΔG being only 0.37 eV for β0-PC and 0.13 eV for β1-PC. The low energy barrier induced by β-PC enhances ion migration barrier and significantly expedites the charge/discharge cycles of Li-S batteries. Furthermore, we investigated the conversion dynamics of Li2S2 to Li2S, employing the computational lithium electrode (CLE) model. The excellent performance in these aspects underscores the potential of these materials as electrocatalysts for Li-S batteries, paving the way for advanced high-efficiency energy storage solutions.
Collapse
Affiliation(s)
- Junru Wang
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Zhichao Liu
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Yinchang Zhao
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Zhenhong Dai
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Juan Hua
- Department of Physics, Yantai University, Yantai 264005, Shandong, China.
| | - Mingwen Zhao
- School of Physics & State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, Shandong, China.
| |
Collapse
|
2
|
Li H, Li X, Wang P, Zhang Z, Davey K, Shi JQ, Qiao SZ. Machine Learning Big Data Set Analysis Reveals C-C Electro-Coupling Mechanism. J Am Chem Soc 2024; 146:22850-22858. [PMID: 39096280 DOI: 10.1021/jacs.4c09079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Carbon-carbon (C-C) coupling is essential in the electrocatalytic reduction of CO2 for the production of green chemicals. However, due to the complexity of the reaction network, there remains controversy regarding the underlying reaction mechanisms and the optimal direction for catalyst material design. Here, we present a global perspective to establish a comprehensive data set encompassing all C-C coupling precursors and catalytic active site compositions to explore the reaction mechanisms and screen catalysts via big data set analysis. The 2D-3D ensemble machine learning strategy, developed to target a variety of adsorption configurations, can quickly and accurately expand quantum chemical calculation data, enabling the rapid acquisition of this extensive big data set. Analyses of the big data set establish that (1) asymmetric coupling mechanisms exhibit greater potential efficiency compared to symmetric coupling, with the optimal path involving the coupling CHO with CH or CH2, and (2) C-C coupling selectivity of Cu-based catalysts can be enhanced through bimetallic doping including CuAgNb sites. Importantly, we experimentally substantiate the CuAgNb catalyst to demonstrate actual boosted performance in C-C coupling. Our finding evidence the practicality of our big data set generated from machine learning-accelerated quantum chemical computations. We conclude that combining big data with complex catalytic reaction mechanisms and catalyst compositions will set a new paradigm for accelerating optimal catalyst design.
Collapse
Affiliation(s)
- Haobo Li
- School of Chemical Engineering, the University of Adelaide, Adelaide SA 5005, Australia
| | - Xinyu Li
- Australian Institute for Machine Learning, the University of Adelaide, Adelaide SA 5000, Australia
| | - Pengtang Wang
- School of Chemical Engineering, the University of Adelaide, Adelaide SA 5005, Australia
| | - Zhen Zhang
- Australian Institute for Machine Learning, the University of Adelaide, Adelaide SA 5000, Australia
| | - Kenneth Davey
- School of Chemical Engineering, the University of Adelaide, Adelaide SA 5005, Australia
| | - Javen Qinfeng Shi
- Australian Institute for Machine Learning, the University of Adelaide, Adelaide SA 5000, Australia
| | - Shi-Zhang Qiao
- School of Chemical Engineering, the University of Adelaide, Adelaide SA 5005, Australia
| |
Collapse
|
3
|
Mairegger T, Li H, Grießer C, Winkler D, Filser J, Hörmann NG, Reuter K, Kunze-Liebhäuser J. Electroreduction of CO 2 in a Non-aqueous Electrolyte-The Generic Role of Acetonitrile. ACS Catal 2023; 13:5780-5786. [PMID: 37180961 PMCID: PMC10167651 DOI: 10.1021/acscatal.3c00236] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/18/2023] [Indexed: 05/16/2023]
Abstract
Transition metal carbides, especially Mo2C, are praised to be efficient electrocatalysts to reduce CO2 to valuable hydrocarbons. However, on Mo2C in an aqueous electrolyte, exclusively the competing hydrogen evolution reaction takes place, and this discrepancy to theory was traced back to the formation of a thin oxide layer at the electrode surface. Here, we study the CO2 reduction activity at Mo2C in a non-aqueous electrolyte to avoid such passivation and to determine products and the CO2 reduction reaction pathway. We find a tendency of CO2 to reduce to carbon monoxide. This process is inevitably coupled with the decomposition of acetonitrile to a 3-aminocrotonitrile anion. Furthermore, a unique behavior of the non-aqueous acetonitrile electrolyte is found, where the electrolyte, instead of the electrocatalyst, governs the catalytic selectivity of the CO2 reduction. This is evidenced by in situ electrochemical infrared spectroscopy on different electrocatalysts as well as by density functional theory calculations.
Collapse
Affiliation(s)
- Thomas Mairegger
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Haobo Li
- School
of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Christoph Grießer
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Daniel Winkler
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| | - Jakob Filser
- Theory
Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Nicolas G. Hörmann
- Theory
Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Karsten Reuter
- Theory
Department, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Julia Kunze-Liebhäuser
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, Innsbruck 6020, Austria
| |
Collapse
|
4
|
Selective CO 2 electroreduction to methanol via enhanced oxygen bonding. Nat Commun 2022; 13:7768. [PMID: 36522322 PMCID: PMC9755525 DOI: 10.1038/s41467-022-35450-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
The reduction of carbon dioxide using electrochemical cells is an appealing technology to store renewable electricity in a chemical form. The preferential adsorption of oxygen over carbon atoms of intermediates could improve the methanol selectivity due to the retention of C-O bond. However, the adsorbent-surface interaction is mainly related to the d states of transition metals in catalysts, thus it is difficult to promote the formation of oxygen-bound intermediates without affecting the carbon affinity. This paper describes the construction of a molybdenum-based metal carbide catalyst that promotes the formation and adsorption of oxygen-bound intermediates, where the sp states in catalyst are enabled to participate in the bonding of intermediates. A high Faradaic efficiency of 80.4% for methanol is achieved at -1.1 V vs. the standard hydrogen electrode.
Collapse
|
5
|
Li H, Reuter K. Ab Initio Thermodynamic Stability of Carbide Catalysts under Electrochemical Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haobo Li
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
6
|
Lu S, Zhu K, Fan D, Hu X. A novel PdC monolayer with fully dispersed Pd atoms and a rigid carbon backbone: an intrinsic versatile electrocatalyst for overall water splitting and the corresponding reverse reaction. Phys Chem Chem Phys 2022; 24:6811-6819. [PMID: 35244636 DOI: 10.1039/d1cp05392b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The electrocatalytic overall water splitting and the corresponding reverse reaction play a vital role in future renewable energy systems and, hence, are frontiers of catalysis research. In this work, we identify a heretofore unknown two-dimensional palladium carbide using the structure swarm intelligence algorithm. The proposed monolayer, named α-PdC, consists of fully dispersed Pd atoms and a rigid carbon backbone, exhibiting high mechanical, dynamical, and thermal stability with desirable electrical conductivity. Further calculations show that the proposed monolayer is an intrinsic multifunctional electrocatalyst. It possesses an excellent catalytic performance toward the hydrogen evolution reaction (HER), the oxygen evolution reaction (OER), and the oxygen reduction reaction (ORR) with low overpotentials. Specifically, the overpotential for the HER is only -0.01 V, and the significantly low activation energy barrier (0.16 eV) on α-PdC elucidates the fast kinetics. Moreover, α-PdC could also be highly active towards the OER and ORR with comparable overpotentials (0.38 and 0.27 V, respectively). This study identifies an intrinsic versatile electrocatalyst with potential applications in the fields of energy conversion and storage.
Collapse
Affiliation(s)
- Shaohua Lu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China. .,Beijing Computational Science Research Center, Beijing 100193, China
| | - Kai Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Dong Fan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiaojun Hu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
7
|
Ringe S, Hörmann NG, Oberhofer H, Reuter K. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem Rev 2021; 122:10777-10820. [PMID: 34928131 PMCID: PMC9227731 DOI: 10.1021/acs.chemrev.1c00675] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Implicit solvation
is an effective, highly coarse-grained approach
in atomic-scale simulations to account for a surrounding liquid electrolyte
on the level of a continuous polarizable medium. Originating in molecular
chemistry with finite solutes, implicit solvation techniques are now
increasingly used in the context of first-principles modeling of electrochemistry
and electrocatalysis at extended (often metallic) electrodes. The
prevalent ansatz to model the latter electrodes and the reactive surface
chemistry at them through slabs in periodic boundary condition supercells
brings its specific challenges. Foremost this concerns the difficulty
of describing the entire double layer forming at the electrified solid–liquid
interface (SLI) within supercell sizes tractable by commonly employed
density functional theory (DFT). We review liquid solvation methodology
from this specific application angle, highlighting in particular its
use in the widespread ab initio thermodynamics approach
to surface catalysis. Notably, implicit solvation can be employed
to mimic a polarization of the electrode’s electronic density
under the applied potential and the concomitant capacitive charging
of the entire double layer beyond the limitations of the employed
DFT supercell. Most critical for continuing advances of this effective
methodology for the SLI context is the lack of pertinent (experimental
or high-level theoretical) reference data needed for parametrization.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Energy Science and Engineering, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science & Engineering Research Center, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.,Chair for Theoretical Physics VII and Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
8
|
Tian D, Denny SR, Li K, Wang H, Kattel S, Chen JG. Density functional theory studies of transition metal carbides and nitrides as electrocatalysts. Chem Soc Rev 2021; 50:12338-12376. [PMID: 34580693 DOI: 10.1039/d1cs00590a] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal carbides and nitrides are interesting non-precious materials that have been shown to replace or reduce the loading of precious metals for catalyzing several important electrochemical reactions. The purpose of this review is to summarize density functional theory (DFT) studies, describe reaction pathways, identify activity and selectivity descriptors, and present a future outlook in designing carbide and nitride catalysts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), oxygen reduction reaction (ORR), nitrogen reduction reaction (N2RR), CO2 reduction reaction (CO2RR) and alcohol oxidation reactions. This topic is of high interest to scientific communities working in the field of electrocatalysis and this review should provide theoretical guidance for the rational design of improved carbide and nitride electrocatalysts.
Collapse
Affiliation(s)
- Dong Tian
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China. .,Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA. .,Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Steven R Denny
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA.
| | - Kongzhai Li
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China.
| | - Hua Wang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization/Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650093, China.
| | - Shyam Kattel
- Department of Physics, Florida A&M University, Tallahassee, FL, 32307, USA.
| | - Jingguang G Chen
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA. .,Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
9
|
Li H, Liu Y, Chen K, Margraf JT, Li Y, Reuter K. Subgroup Discovery Points to the Prominent Role of Charge Transfer in Breaking Nitrogen Scaling Relations at Single-Atom Catalysts on VS 2. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01324] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Haobo Li
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Yunxia Liu
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Ke Chen
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Johannes T. Margraf
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
10
|
Griesser C, Li H, Wernig EM, Winkler D, Shakibi Nia N, Mairegger T, Götsch T, Schachinger T, Steiger-Thirsfeld A, Penner S, Wielend D, Egger D, Scheurer C, Reuter K, Kunze-Liebhäuser J. True Nature of the Transition-Metal Carbide/Liquid Interface Determines Its Reactivity. ACS Catal 2021; 11:4920-4928. [PMID: 33898080 PMCID: PMC8057231 DOI: 10.1021/acscatal.1c00415] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/17/2021] [Indexed: 01/01/2023]
Abstract
Compound materials, such as transition-metal (TM) carbides, are anticipated to be effective electrocatalysts for the carbon dioxide reduction reaction (CO2RR) to useful chemicals. This expectation is nurtured by density functional theory (DFT) predictions of a break of key adsorption energy scaling relations that limit CO2RR at parent TMs. Here, we evaluate these prospects for hexagonal Mo2C in aqueous electrolytes in a multimethod experiment and theory approach. We find that surface oxide formation completely suppresses the CO2 activation. The oxides are stable down to potentials as low as -1.9 V versus the standard hydrogen electrode, and solely the hydrogen evolution reaction (HER) is found to be active. This generally points to the absolute imperative of recognizing the true interface establishing under operando conditions in computational screening of catalyst materials. When protected from ambient air and used in nonaqueous electrolyte, Mo2C indeed shows CO2RR activity.
Collapse
Affiliation(s)
- Christoph Griesser
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Haobo Li
- Chair
of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, 85748 Garching, Germany
| | - Eva-Maria Wernig
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Daniel Winkler
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Niusha Shakibi Nia
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Thomas Mairegger
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Thomas Götsch
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
- Department
of Heterogeneous Reactions, Max Planck Institute
for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
- Department
of Inorganic Chemistry, Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Thomas Schachinger
- University
Service Center for Transmission Electron Microscopy, TU Wien, 1040 Vienna, Austria
| | | | - Simon Penner
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| | - Dominik Wielend
- Linz Institute
for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University, 4040 Linz, Austria
| | - David Egger
- Chair
of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, 85748 Garching, Germany
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Christoph Scheurer
- Chair
of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, 85748 Garching, Germany
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karsten Reuter
- Chair
of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, 85748 Garching, Germany
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Julia Kunze-Liebhäuser
- Department
of Physical Chemistry, University of Innsbruck, Innrain 52c, 6020 Innsbruck, Austria
| |
Collapse
|
11
|
Liu X, Liu J, Yang Y, Li YW, Wen X. Theoretical Perspectives on the Modulation of Carbon on Transition-Metal Catalysts for Conversion of Carbon-Containing Resources. ACS Catal 2021. [DOI: 10.1021/acscatal.0c04739] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jinjia Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Yong Yang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| | - Yong-Wang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, People’s Republic of China
- The University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, People’s Republic of China
| |
Collapse
|