1
|
Yan P, Huang J, Wu G, Zhang Y, Mo Z, Xu K, Ling M, Dong S, Xu L, Li H. Construction of a In 2O 3/ultrathin g-C 3N 4 S-scheme heterojunction for sensitive photoelectrochemical aptasensing of diazinon. J Colloid Interface Sci 2025; 679:653-661. [PMID: 39388951 DOI: 10.1016/j.jcis.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
A single semiconductor-based photoelectrochemical (PEC) aptasensor usually faces a challenge of low sensitivity due to poor solar energy utilization and a high photogenerated carrier recombination rate. Herein, an ultra-thin carbon nitride nanosheet-coated In2O3 (In2O3/CNS) S-type heterojunction-based PEC aptasensor has been established to achieve highly sensitive detection of diazinon (DZN) pesticide in water environment. Construction of S-type heterojunction induces a band shift and an electric field effect, enhancing light utilization and accelerating directional transmission of carriers, leading to outstanding PEC performance. The creation of internal electric field at interface ensures stable carrier transport. Additionally, ultrathin CNS structure can effectively shorten the transport path of carriers. The close coating of In2O3 and CNS promotes the transfer of charge. The synergistic effects amplify the sensor's response, ultimately enabling the effective detection of DZN residue over a wide detection range (0.98 ∼ 980.0 pg mL-1), a low detection limit (0.33 pg mL-1, S/N = 3) and excellent accuracy in practical application (RSD < 5 %). This work provides a reference for the construction of a new S-type heterojunction-based PEC sensor.
Collapse
Affiliation(s)
- Pengcheng Yan
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Yongkang Jiaxiao Electric Welding Automation Equipment Co., Ltd, Jinhua 321300, Zhejiang, PR China
| | - Jing Huang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Guanyu Wu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Yu Zhang
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Zhao Mo
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224007, Jiangsu, PR China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Sihua Dong
- YTO Group Corporation Dongfanghong (Henan) Agricultural Service Technology Co., Ltd., Luoyang 471033, PR China
| | - Li Xu
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| | - Henan Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China.
| |
Collapse
|
2
|
Ma W, Yu L, Kang P, Chu Z, Li Y. Modifications and Applications of Metal-Organic-Framework-Based Materials for Photocatalysis. Molecules 2024; 29:5834. [PMID: 39769925 PMCID: PMC11728452 DOI: 10.3390/molecules29245834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/07/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Metal-organic frameworks (MOFs) represent a category of crystalline materials formed by the combination of metal ions or clusters with organic linkers, which have emerged as a prominent research focus in the field of photocatalysis. Owing to their distinctive characteristics, including structural diversity and configurations, significant porosity, and an extensive specific surface area, they provide a flexible foundation for various potential applications in photocatalysis. In recent years, researchers have tackled many issues in the MOF-based photocatalytic yield. However, limited light adsorption regions, lack of active sites and active species, and insufficient efficiency of photogenerated charge carrier separation substantially hinder the photocatalytic performance. In this review, we summarized the strategies to improve the photocatalytic performance and recent developments achieved in MOF and MOF-based photocatalysis, including water splitting, CO2 conversion, photocatalytic degradation of pollutants, and photocatalytic nitrogen fixation into ammonia. In conclusion, the existing challenges and prospective advancements in MOF-based photocatalysis are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Yingxuan Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China; (W.M.); (L.Y.); (P.K.); (Z.C.)
| |
Collapse
|
3
|
Hou Z, Chen H, Chu J, Wang J, Li A, François-Xavier Corvini P. Bimetallic Pd-In alloy supported on TiO 2 nanosheets breaks the rate-limiting step for ultrafast photocatalytic denitrification. J Colloid Interface Sci 2024; 680:162-171. [PMID: 39504746 DOI: 10.1016/j.jcis.2024.10.191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/08/2024]
Abstract
Herein, the bimetallic Pd3In1 alloy were deposited onto the crystal facet engineered TiO2 nanosheet (NS) via one-step photoreduction (Pd3In1/TiO2-NS) for selective conversion of nitrate (NO3-) to N2. Bimetallic Pd3In1 provides higher affinity sites to bind NO3- and significantly reduces the energy barrier of the rate-limiting step (NO3* + e- → NO2*), which is the key for the ultra-fast NO3- reduction kinetics. More importantly, the synergistic effect of Pd and In not only suppresses the hydrogen evolution reaction resulting in high efficiency utilization of photogenerated electrons, but also promotes the selective conversion of nitrite (NO2-) to N2. Consequently, Pd3In1/TiO2-NS exhibits 100 % NO3- conversion and 90 % N2 selectivity within 20 min in six cycles. One order of magnitude improvement on the NO3- reduction kinetic constants of Pd3In1/TiO2-NS (0.254 min-1) is achieved compared with pristine TiO2-NS and monometallic loaded ones. This work provides new insights into the rational construction of bimetallic alloy cocatalysts for high-efficiency photocatalytic denitrification.
Collapse
Affiliation(s)
- Zhiang Hou
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Hao Chen
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Jiangfeng Chu
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | - Jinnan Wang
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China.
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse & School of the Environment Nanjing University, Nanjing 210023, China
| | | |
Collapse
|
4
|
Huang H, Ding L, Wang X, Jiang Q, Li Q, Hu J. Edge-oriented growth of cadmium sulfide nanoparticles on nickel metal-organic framework nanosheets for photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 670:86-95. [PMID: 38759271 DOI: 10.1016/j.jcis.2024.05.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
In this study, a directional loading of cadmium sulfide (CdS) nanoparticles (NPs) was achieved on the opposite edges of nickel metal-organic framework (Ni-MOF) nanosheets (NSs) by adjusting the weight ratio of CdS NPs in the reaction process to produce effective visible light photocatalysts. The close contact between the zero-dimensional (0D) and two-dimensional (2D) regions and the matching positions of the bands promoted charge separation and heterojunction formation. The optimal CdS NPs loading of composite material was 40 wt%. At this ratio, CdS NPs grew primarily at the opposite edges of the Ni-MOF NSs rather than on their surfaces. When lactic acid was used as the sacrificial agent, the hydrogen production rate of the 40 %-CdS/Ni-MOF heterojunction under visible light irradiation was 19.6 mmol h-1 g-1, making a 20-fold enhancement compared to the original CdS NPs sample (1.0 mmol h-1 g-1). The charge carriers generated in CdS NPs were transferred to Ni-MOF NSs through heterojunctions, where Ni-MOF NSs also served as cocatalysts to improve hydrogen production. The combination of the two materials improved the light absorption ability. In particular, the 40 %-CdS/Ni-MOF heterojunction exhibited good photostability, effectively preventing the photocorrosion of CdS NPs. This study introduces an approach for constructing efficient and stable photocatalysts for visible light-driven photocatalytic hydrogen production.
Collapse
Affiliation(s)
- Han Huang
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Liyong Ding
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, PR China.
| | - Xuedong Wang
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Qingqing Jiang
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Qin Li
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China
| | - Juncheng Hu
- Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, PR China.
| |
Collapse
|
5
|
Zhao F, Yu L, Wang J, Cao W, Zhang H, Wang H, Wang PH, Qiao Z. Metal-Organic Framework-Derived Au-Doped In 2O 3 Nanotubes for Monitoring CO at the ppb Level. ACS Sens 2024; 9:4007-4016. [PMID: 39078621 DOI: 10.1021/acssensors.4c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Achieving selective detection of ppb-level CO is important for air quality testing at industrial sites to ensure personal safety. Noble metal doping enhances charge transfer, which in turn reduces the detection limit of metal oxide gas sensors. In this work, metal-organic framework-derived Au-doped In2O3 nanotubes with high electrical conductivity are synthesized by pyrolysis of the Au-doped metal-organic framework (In-MIL-68) as a template. Gas-sensing experiments reveal that the detection limit of 0.2% Au-doped In2O3 nanotubes (0.2% Au, mass fraction) is as low as 750 ppb. Meanwhile, the sensing material shows a response value of 18.2 to 50 ppm of CO at 240 °C, which is about 2.8 times higher than that of pure In2O3. Meanwhile, the response and recovery times are short (37 s/86 s). The gas-sensing mechanism of CO is uncovered by in situ DRIFTS through the reaction intermediates. In addition, first-principles calculations suggest that Au doping of In2O3 significantly enhances its adsorption energy for CO and improves the electron transfer properties. This study reveals a novel synthesis pathway for Au-doped In2O3 nanotubular structures and their potential application in low concentration CO detection.
Collapse
Affiliation(s)
- Fan Zhao
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
- Research Institute of Chemical Defense, Beijing 102205, China
| | - Lingmin Yu
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Jingfeng Wang
- Research Institute of Chemical Defense, Beijing 102205, China
| | - Wei Cao
- Research Institute of Chemical Defense, Beijing 102205, China
| | - Hao Zhang
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, Shaanxi 710021, China
| | - Hairong Wang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, PR China
| | - Pu-Hong Wang
- Research Institute of Chemical Defense, Beijing 102205, China
| | - Zhihong Qiao
- Research Institute of Chemical Defense, Beijing 102205, China
| |
Collapse
|
6
|
Zhao F, Liang G, Yang X, Lei Y, Jin F, Xu L, Zhang C, Jiang W, Ben H, Li X. Micro-Structure Engineering in Pd-InO x Catalysts and Mechanism Studies for CO 2 Hydrogenation to Methanol. Molecules 2024; 29:3715. [PMID: 39202795 PMCID: PMC11357378 DOI: 10.3390/molecules29163715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024] Open
Abstract
Significant interest has emerged for the application of Pd-In2O3 catalysts as high-performance catalysts for CO2 hydrogenation to CH3OH. However, precise active site control in these catalysts and understanding their reaction mechanisms remain major challenges. In this investigation, a series of Pd-InOx catalysts were synthesized, revealing three distinct types of active sites: In-O, Pd-O(H)-In, and Pd2In3. Lower Pd loadings exhibited Pd-O(H)-In sites, while higher loadings resulted in Pd2In3 intermetallic compounds. These variations impacted catalytic performance, with Pd-O(H)-In catalysts showing heightened activity at lower temperatures due to the enhanced CO2 adsorption and H2 activation, and Pd2In3 catalysts performing better at elevated temperatures due to the further enhanced H2 activation. In situ DRIFTS studies revealed an alteration in key intermediates from *HCOO over In-O bonds to *COOH over Pd-O(H)-In and Pd2In3 sites, leading to a shift in the main reaction pathway transition and product distribution. Our findings underscore the importance of active site engineering for optimizing catalytic performance and offer valuable insights for the rational design of efficient CO2 conversion catalysts.
Collapse
Affiliation(s)
- Fengwang Zhao
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Gemeng Liang
- Hubei Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemical Engineering & Advanced Materials, University of Adelaide, Adelaide, SA 5000, Australia
| | - Xiaoli Yang
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Yang Lei
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Fayi Jin
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Leilei Xu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Centre of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Chuanhui Zhang
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Wei Jiang
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Haoxi Ben
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| | - Xingyun Li
- State Key Laboratory of BioFibers and Eco-Textiles, Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China; (F.Z.)
| |
Collapse
|
7
|
Jiang B, Lin J, Hua H, Liu Y, Yu S, Sun Y. Simultaneous removal of naphthalene and NO x over V-Ce/Ti catalyst: Design of separated active sites for naphthalene degradation and SCR reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134788. [PMID: 38850934 DOI: 10.1016/j.jhazmat.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
V-Ce/Ti catalysts were prepared for the removal of naphthalene and NOx in the flue gas. The adverse effects of NH3 and NO on the naphthalene degradation were weakened on V-Ce/Ti, resulting in a decrease of only 2.5 % in COx selectivity. The formation of high molecular weight byproducts was also reduced. Besides the acid sites on the catalysts, Ce introduced new Brønsted basic sites, which could also adsorb and degrade naphthalene into naphthol effectively. With the separated active sites for naphthalene degradation and NO removal, the reaction between NH3 and the intermediates during the naphthalene degradation was also inhibited, decreasing the formation and accumulation of phthalimide. The oxidation of the intermediates was promoted by active V5+ introduced by Ce, inhibiting the transformation of the intermediates to higher molecular weight byproducts. Nearly 100 % conversion of naphthalene and NO, as well as 40.1 % of the COx selectivity were obtained on V-Ce/Ti.
Collapse
Affiliation(s)
- Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Jianxiang Lin
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Hua
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shaocai Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Yuhai Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| |
Collapse
|
8
|
Dong C, Chen Q, Deng X, Jiang L, Tan H, Zhou Y, Chen J, Wang R. Enhanced Photocatalytic Hydrogen Evolution of In 2S 3 by Decorating In 2O 3 with Rich Oxygen Vacancies. Inorg Chem 2024; 63:11125-11134. [PMID: 38833320 DOI: 10.1021/acs.inorgchem.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
The hydrogen (H2) evolution rates of photocatalysts suffer from weak oxidation and reduction ability and low photogenerated charge carrier separation efficiency. Herein, by combining band-gap structure optimization and vacancy modulation through a one-step hydrothermal method, In2O3 containing oxygen vacancy (Ov/In2O3) is simply introduced into In2S3 to promote photocatalytic hydrogen evolution. Specifically, the change in the sulfur source ratio can induce the coexistence of Ov/In2O3 and In2S3 in a high-temperature hydrothermal process. Under light irradiation, In2S3@Ov/In2O3-0.1 nanosheets hold a remarkable average H2 evolution rate up to 4.04 mmol g-1 h-1, which is 32.14, 11.91, and 2.25-fold better than those of pristine In2S3, In2S3@Ov/In2O3-0.02, and In2S3@Ov/In2O3-0.25 nanosheets, respectively. The ultraviolet-visible (UV-vis) diffuse reflectance and photoluminescence (PL) spectra reveal that the formation of Ov/In2O3 in In2S3 optimizes the band-gap structure and accelerates the migration of the photogenerated charge carrier of In2S3@Ov/In2O3-x nanosheets, respectively. Both the enhancement of oxidation and reduction ability and photogenerated charge carrier separation ability are responsible for the remarkable improvement in photocatalytic H2 evolution performance. This work provides a new strategy to prepare a composite of metal sulfide and metal oxide through a one-step hydrothermal method.
Collapse
Affiliation(s)
- Changxue Dong
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Qiuyan Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Deng
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Lan Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Han Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yufeng Zhou
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinwei Chen
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruilin Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Wu Y, Xu K, Tian J, Shang L, Tan KB, Sun H, Sun K, Rao X, Zhan G. Construction of Ni/In 2O 3 Integrated Nanocatalysts Based on MIL-68(In) Precursors for Efficient CO 2 Hydrogenation to Methanol. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16186-16202. [PMID: 38516696 DOI: 10.1021/acsami.3c19311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The efficient and economic conversion of CO2 and renewable H2 into methanol has received intensive attention due to growing concern for anthropogenic CO2 emissions, particularly from fossil fuel combustion. Herein, we have developed a novel method for preparing Ni/In2O3 nanocatalysts by using porous MIL-68(In) and nickel(II) acetylacetonate (Ni(acac)2) as the dual precursors of In2O3 and Ni components, respectively. Combined with in-depth characterization analysis, it was revealed that the utilization of MIL-68(In) as precursors favored the good distribution of Ni nanoparticles (∼6.2 nm) on the porous In2O3 support and inhibited the metal sintering at high temperatures. The varied catalyst fabrication parameters were explored, indicating that the designed Ni/In2O3 catalyst (Ni content of 5 wt %) exhibited better catalytic performance than the compared catalyst prepared using In(OH)3 as a precursor of In2O3. The obtained Ni/In2O3 catalyst also showed excellent durability in long-term tests (120 h). However, a high Ni loading (31 wt %) would result in the formation of the Ni-In alloy phase during the CO2 hydrogenation which favored CO formation with selectivity as high as 69%. This phenomenon is more obvious if Ni and In2O3 had a strong interaction, depending on the catalyst fabrication methods. In addition, with the aid of in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory (DFT) calculations, the Ni/In2O3 catalyst predominantly follows the formate pathway in the CO2 hydrogenation to methanol, with HCOO* and *H3CO as the major intermediates, while the small size of Ni particles is beneficial to the formation of formate species based on DFT calculation. This study suggests that the Ni/In2O3 nanocatalyst fabricated using metal-organic frameworks as precursors can effectively promote CO2 thermal hydrogenation to methanol.
Collapse
Affiliation(s)
- Yiling Wu
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Kaiji Xu
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Jian Tian
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Longmei Shang
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Kok Bing Tan
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Hao Sun
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing 210042, Jiangsu, P. R. China
| | - Kang Sun
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry (CAF), 16 Suojin Five Village, Nanjing 210042, Jiangsu, P. R. China
| | - Xiaoping Rao
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| | - Guowu Zhan
- Academy of Advanced Carbon Conversion Technology, College of Chemical Engineering, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
- Fujian Provincial Key Laboratory of Biomass Low-Carbon Conversion, Huaqiao University, 668 Jimei Avenue, Xiamen 361021, Fujian, P. R. China
| |
Collapse
|
10
|
Feng L, Gu Y, Dong M, Liu J, Jiang L, Wu Y. CO 2 utilization for methanol production: a review on the safety concerns and countermeasures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23393-23407. [PMID: 38451455 DOI: 10.1007/s11356-024-32779-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
The catalytic conversion of carbon dioxide is one of the important ways to achieve the goal of carbon neutralization, which can be further divided into electrocatalysis, thermal catalysis, and photocatalysis. Although photocatalysis and electrocatalysis have the advantages of mild reaction conditions and low energy consumption, the thermal catalytic conversion of CO2 has larger processing capacity, better reduction effect, and more complete industrial foundation, which is a promising technology in the future. During the development of new technology from laboratory to industrial application, ensuring the safety of production process is essential. In this work, safety optimization design of equipment, safety performance of catalysts, accident types, and their countermeasures in the industrial applications of CO2 to methanol are reviewed and discussed in depth. Based on that, future research demands for industrial process safety of CO2 to methanol were proposed, which provide guidance for the large-scale application of CO2 thermal catalytic conversion technology.
Collapse
Affiliation(s)
- Lele Feng
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China.
| | - Yifan Gu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Maifan Dong
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Jie Liu
- School of Safety Engineering, China University of Mining and Technology, Xuzhou, 221116, Jiangsu, China
| | - Liangliang Jiang
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, AB, Canada
| | - Yuxin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Chen J, Zhang D, Liu B, Zheng K, Li Y, Xu Y, Li Z, Liu X. Photoinduced Precise Synthesis of Diatomic Ir 1 Pd 1 -In 2 O 3 for CO 2 Hydrogenation to Methanol via Angstrom-Scale-Distance Dependent Synergistic Catalysis. Angew Chem Int Ed Engl 2024; 63:e202401168. [PMID: 38336924 DOI: 10.1002/anie.202401168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
The atomically dispersed metal catalysts with full atomic utilization and well-defined site structure hold great promise for various catalytic reactions. However, the single metallic site limits the comprehensive reaction performance in most reactions. Here, we demonstrated a photo-induced neighbour-deposition strategy for the precise synthesis of diatomic Ir1 Pd1 on In2 O3 applied for CO2 hydrogenation to methanol. The proximity synergism between diatomic sites enabled a striking promotion in both CO2 conversion (10.5 %) and methanol selectivity (97 %) with good stability of 100 h run. It resulted in record-breaking space-time yield to methanol (187.1 gMeOH gmetal -1 hour-1 ). The promotional effect mainly originated from stronger CO2 adsorption on Ir site with assistance of H-spillover from Pd site, thus leading to a lower energy barrier for *HCOO pathway. It was confirmed that this synergistic effect strongly depended on the dual-site distance in an angstrom scale, which was attributed to weaker *H spillover and less electron transfer from Pd to Ir site as the Pd-to-Ir distance increased. The average dual-site distance was evaluated by our firstly proposed photoelectric model. Thus, this study introduced a pioneering strategy to precisely synthesize homonuclear/heteronuclear diatomic catalysts for facilitating the desired reaction route via diatomic synergistic catalysis.
Collapse
Affiliation(s)
- Jie Chen
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dongjian Zhang
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Ke Zheng
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yufeng Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zaijun Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
12
|
Yuan L, Du P, Yin L, Yao J, Wang J, Liu C. Metal-organic framework-based S-scheme heterojunction photocatalysts. NANOSCALE 2024. [PMID: 38393670 DOI: 10.1039/d3nr06677k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Photocatalysis is a promising technology to resolve energy and environmental issues, where the design of high-efficiency photocatalysts is the central task. As an emerging family of photocatalysts, semiconducting metal-organic frameworks (MOFs) with remarkable features have demonstrated great potential in various photocatalytic fields. Compared to MOF-based photocatalysts with a single component, construction of S-scheme heterojunctions can render MOFs with enhanced charge separation, redox capacity and solar energy utilization, and thus improved photocatalytic performance. Herein, an overview of the recent advances in the design of MOF-based S-scheme heterojunctions for photocatalytic applications is provided. The basic principle of S-scheme heterojunctions is introduced. Then, three types of MOF-based S-scheme heterojunctions with different compositions are systematically summarized including MOF/non-MOF, MOF-on-MOF and MOF-derived heterojunctions. Afterwards, the enhanced performances of MOF-based S-scheme heterojunctions in hydrogen production, CO2 reduction, C-H functionalization, H2O2 production and wastewater treatment are highlighted. Lastly, the current challenges and future prospects regarding the design and applications of MOF-based S-scheme heterojunctions are discussed to inspire the further development of this emerging field.
Collapse
Affiliation(s)
- Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| | - Peiyang Du
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| | - Luli Yin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Jiamin Yao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Jing Wang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, P.R. China.
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P.R. China.
| |
Collapse
|
13
|
Li X, Fang C, Huang L, Yu J. Enhanced carbon dioxide adsorption and carrier separation over amine functionalized zirconium metal organic framework/gold/indium oxide for boosting photocatalytic carbon dioxide reduction. J Colloid Interface Sci 2024; 655:485-492. [PMID: 37952453 DOI: 10.1016/j.jcis.2023.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/14/2023]
Abstract
Photocatalytic CO2 conversion is a prospective way to mitigate greenhouse effect. In2O3 is widely used in the resource conversion of CO2, but still exists a few drawbacks containing limited CO2 capture and activation, narrow light absorption range, low charge separation and utilization. To overcome these disadvantages, an NH2-UiO-66/Au/In2O3 composite photocatalyst is built, with Au nanoparticles and NH2-UiO-66 decorated on the surface of In2O3 nanorods. Significantly, the improved carrier separation ability is attributed to the Schottky junction at the Au/In2O3 interface and the heterostructure between In2O3 and NH2-UiO-66. And the widened light absorption is attributed to the plasmon effect caused by Au nanoparticles. Moreover, the increase of CO2 adsorption and activation is mainly due to the porosity of NH2-UiO-66, thereby greatly improving photocatalytic CO2RR efficiency of NH2-UiO-66/Au/In2O3 nanorods. The CO yield of NH2-UiO-66/Au/In2O3 is 8.56 μmol g-1 h-1, which is nearly 45 times that of In2O3. This work will present a novel idea to design high-efficient composite photocatalysts for CO2 reduction by multifunctional component synergistic enhancement.
Collapse
Affiliation(s)
- Xiao Li
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| | - Chaoqiong Fang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Lijun Huang
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Jiayuan Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
14
|
Yang Y, Guo M, Zhao F. Cr 2 O 3 Promoted In 2 O 3 Catalysts for CO 2 Hydrogenation to Methanol. Chemphyschem 2024; 25:e202300530. [PMID: 37867156 DOI: 10.1002/cphc.202300530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Cr2 O3 was applied to study the modification of In2 O3 based catalysts for CO2 hydrogenation to methanol reaction. Combined with X-ray diffraction (XRD), scanning transmission electron microscopy (STEM), X-ray photoelectron spectroscopy (XPS), etc., the structure of the catalysts was characterized. The reaction performances for CO2 hydrogenation to methanol were evaluated on a stainless-steel fix-bed reactor. The results showed that solid solutions were formed for the Cr2 O3 promoted In2 O3 catalysts. The important role of electronic interaction between Cr2 O3 and In2 O3 was revealed in the hydrogenation reaction. In1.25 Cr0.75 O3 sample exhibited the highest methanol yield, which was 2.8 times higher than that of pure In2 O3 . No deactivation was observed for In1.25 Cr0.75 O3 sample during the 50 hours of reaction. The improved catalytic performance may be due to the formation of the solid solutions and the highest amount of oxygen vacancies.
Collapse
Affiliation(s)
- Yuying Yang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Meng Guo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Fuzhen Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| |
Collapse
|
15
|
Hou SL, Dong J, Zhao XY, Li XS, Ren FY, Zhao J, Zhao B. Thermocatalytic Conversion of CO 2 to Valuable Products Activated by Noble-Metal-Free Metal-Organic Frameworks. Angew Chem Int Ed Engl 2023; 62:e202305213. [PMID: 37170958 DOI: 10.1002/anie.202305213] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/13/2023]
Abstract
Thermocatalysis of CO2 into high valuable products is an efficient and green method for mitigating global warming and other environmental problems, of which Noble-metal-free metal-organic frameworks (MOFs) are one of the most promising heterogeneous catalysts for CO2 thermocatalysis, and many excellent researches have been published. Hence, this review focuses on the valuable products obtained from various CO2 conversion reactions catalyzed by noble-metal-free MOFs, such as cyclic carbonates, oxazolidinones, carboxylic acids, N-phenylformamide, methanol, ethanol, and methane. We classified these published references according to the types of products, and analyzed the methods for improving the catalytic efficiency of MOFs in CO2 reaction. The advantages of using noble-metal-free MOF catalysts for CO2 conversion were also discussed along the text. This review concludes with future perspectives on the challenges to be addressed and potential research directions. We believe that this review will be helpful to readers and attract more scientists to join the topic of CO2 conversion.
Collapse
Affiliation(s)
- Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jie Dong
- College of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, 450001, China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Material Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, China
| |
Collapse
|
16
|
Shi Y, Su W, Wei X, Bai Y, Song X, Lv P, Wang J, Yu G. Carbon coated In 2O 3 hollow tubes embedded with ultra-low content ZnO quantum dots as catalysts for CO 2 hydrogenation to methanol. J Colloid Interface Sci 2023; 636:141-152. [PMID: 36623367 DOI: 10.1016/j.jcis.2023.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
CO2 hydrogenation coupled with renewable energy to produce methanol is of great interest. Carbon coated In2O3 hollow tube catalysts embedded with ultra-low content ZnO quantum dots (QDs) were synthesized for CO2 hydrogenation to methanol. ZnO-In2O3-II catalyst had the highest CO2 and H2 adsorption capacity, which demonstrated the highest methanol formation rate. When CO2 conversion was 8.9%, methanol selectivity still exceeded 86% at 3.0 MPa and 320 °C, and STY of methanol reached 0.98 gMeOHh-1gcat-1 at 350 °C. The ZnO/In2O3 QDs heterojunctions were formed at the interface between ZnO and In2O3(222). The ZnO/In2O3 heterojunctions, as a key structure to promote the CO2 hydrogenation to methanol, not only enhanced the interaction between ZnO and In2O3 as well as CO2 adsorption capacity, but also accelerated the electron transfer from In3+ to Zn2+. ZnO QDs boosted the dissociation and activation of H2. The carbon layer coated on In2O3 surface played a role of hydrogen spillover medium, and the dissociated H atoms were transferred to the CO2 adsorption sites on the In2O3 surface through the carbon layer, promoting the reaction of H atoms with CO2 more effectively. In addition, the conductivity of carbon enhanced the electron transfer from In3+ to Zn2+. The combination of the ZnO/In2O3 QDs heterojunctions and carbon layer greatly improved the methanol generation activity.
Collapse
Affiliation(s)
- Yuchen Shi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Weiguang Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xinyu Wei
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yonghui Bai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xudong Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Peng Lv
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiaofei Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Guangsuo Yu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China; Institute of Clean Coal Technology, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
17
|
Cai D, Cai Y, Tan KB, Zhan G. Recent Advances of Indium Oxide-Based Catalysts for CO 2 Hydrogenation to Methanol: Experimental and Theoretical. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2803. [PMID: 37049097 PMCID: PMC10095753 DOI: 10.3390/ma16072803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Methanol synthesis from the hydrogenation of carbon dioxide (CO2) with green H2 has been proven as a promising method for CO2 utilization. Among the various catalysts, indium oxide (In2O3)-based catalysts received tremendous research interest due to the excellent methanol selectivity with appreciable CO2 conversion. Herein, the recent experimental and theoretical studies on In2O3-based catalysts for thermochemical CO2 hydrogenation to methanol were systematically reviewed. It can be found that a variety of steps, such as the synthesis method and pretreatment conditions, were taken to promote the formation of oxygen vacancies on the In2O3 surface, which can inhibit side reactions to ensure the highly selective conversion of CO2 into methanol. The catalytic mechanism involving the formate pathway or carboxyl pathway over In2O3 was comprehensively explored by kinetic studies, in situ and ex situ characterizations, and density functional theory calculations, mostly demonstrating that the formate pathway was extremely significant for methanol production. Additionally, based on the cognition of the In2O3 active site and the reaction path of CO2 hydrogenation over In2O3, strategies were adopted to improve the catalytic performance, including (i) metal doping to enhance the adsorption and dissociation of hydrogen, improve the ability of hydrogen spillover, and form a special metal-In2O3 interface, and (ii) hybrid with other metal oxides to improve the dispersion of In2O3, enhance CO2 adsorption capacity, and stabilize the key intermediates. Lastly, some suggestions in future research were proposed to enhance the catalytic activity of In2O3-based catalysts for methanol production. The present review is helpful for researchers to have an explicit version of the research status of In2O3-based catalysts for CO2 hydrogenation to methanol and the design direction of next-generation catalysts.
Collapse
|
18
|
Kanuri S, Vinodkumar JD, Datta SP, Chakraborty C, Roy S, Singh SA, Dinda S. Methanol synthesis from CO2 via hydrogenation route: Thermodynamics and process development with techno-economic feasibility analysis. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
19
|
Lu X, Song C, Qi X, Li D, Lin L. Confinement Effects in Well-Defined Metal-Organic Frameworks (MOFs) for Selective CO 2 Hydrogenation: A Review. Int J Mol Sci 2023; 24:ijms24044228. [PMID: 36835639 PMCID: PMC9959283 DOI: 10.3390/ijms24044228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 02/23/2023] Open
Abstract
Decarbonization has become an urgent affair to restrain global warming. CO2 hydrogenation coupled with H2 derived from water electrolysis is considered a promising route to mitigate the negative impact of carbon emission and also promote the application of hydrogen. It is of great significance to develop catalysts with excellent performance and large-scale implementation. In the past decades, metal-organic frameworks (MOFs) have been widely involved in the rational design of catalysts for CO2 hydrogenation due to their high surface areas, tunable porosities, well-ordered pore structures, and diversities in metals and functional groups. Confinement effects in MOFs or MOF-derived materials have been reported to promote the stability of CO2 hydrogenation catalysts, such as molecular complexes of immobilization effect, active sites in size effect, stabilization in the encapsulation effect, and electron transfer and interfacial catalysis in the synergistic effect. This review attempts to summarize the progress of MOF-based CO2 hydrogenation catalysts up to now, and demonstrate the synthetic strategies, unique features, and enhancement mechanisms compared with traditionally supported catalysts. Great emphasis will be placed on various confinement effects in CO2 hydrogenation. The challenges and opportunities in precise design, synthesis, and applications of MOF-confined catalysis for CO2 hydrogenation are also summarized.
Collapse
Affiliation(s)
- Xiaofei Lu
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Chuqiao Song
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xingyu Qi
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Duanxing Li
- Department of Chemical System Engineering, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Lili Lin
- Institute of Industrial Catalysis, State Key Laboratory of Green Chemistry Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence:
| |
Collapse
|
20
|
Tan M, Yu C, Zeng H, Liu C, Dong W, Meng H, Su Y, Qiao L, Gao L, Lu Q, Bai Y. In situ fabrication of MIL-68(In)@ZnIn 2S 4 heterojunction for enhanced photocatalytic hydrogen production. NANOSCALE 2023; 15:2425-2434. [PMID: 36651383 DOI: 10.1039/d2nr07017k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic frameworks (MOFs), as a class of semiconductor-like materials, are widely used in photocatalysis. However, the limited visible light absorption and poor charge separation efficiency are the main challenges restricting their photocatalytic performance. Herein, the type II heterojunction MIL-68(In)@ZIS was successfully fabricated by in situ growth of ZnIn2S4 (ZIS) on the surface of a representative MOF, i.e. MIL-68(In). After composition optimization, MIL-68(In)-20@ZIS shows an extraordinary photocatalytic hydrogen production efficiency of 9.09 mmol g-1 h-1 and good photochemical stability, which far exceeds those of most photocatalysts. The hierarchical loose structure of MIL-68(In)-20@ZIS is conducive to the adsorption of reactants and mass transfer. Meanwhile, a large number of tight 2D contact interfaces significantly reduce the obstruction of charge transfer, paving the way for high-perform photocatalytic hydrogen evolution. The experimental results demonstrate that the MIL-68(In)@ZIS heterojunction achieves intensive photoresponse and effective charge separation and transfer benefiting from unique charge transport paths of a type II heterojunction. This study opens an avenue toward MOF-based heterojunctions for solar energy conversion.
Collapse
Affiliation(s)
- Mengxi Tan
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengye Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hua Zeng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanbao Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenjun Dong
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Huimin Meng
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
- Institute for Advanced Material and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
21
|
Pu T, Zhang W, Zhu M. Engineering Heterogeneous Catalysis with Strong Metal-Support Interactions: Characterization, Theory and Manipulation. Angew Chem Int Ed Engl 2023; 62:e202212278. [PMID: 36287199 DOI: 10.1002/anie.202212278] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Strong metal-support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.
Collapse
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenhao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
22
|
Cui WG, Zhang Q, Zhou L, Wei ZC, Yu L, Dai JJ, Zhang H, Hu TL. Hybrid MOF Template-Directed Construction of Hollow-Structured In 2 O 3 @ZrO 2 Heterostructure for Enhancing Hydrogenation of CO 2 to Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204914. [PMID: 36372548 DOI: 10.1002/smll.202204914] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/09/2022] [Indexed: 06/16/2023]
Abstract
Direct hydrogenation of CO2 to methanol using green hydrogen has emerged as a promising method for carbon neutrality, but qualifying catalysts represent a grand challenge. In2 O3 /ZrO2 catalyst has been extensively applied in methanol synthesis due to its superior activity; however, the electronic effect by strong oxides-support interactions between In2 O3 and ZrO2 at the In2 O3 /ZrO2 interface is poorly understood. In this work, abundant In2 O3 /ZrO2 heterointerfaces are engineered in a hollow-structured In2 O3 @ZrO2 heterostructure through a facile pyrolysis of a hybrid metal-organic framework precursor MIL-68@UiO-66. Owing to well-defined In2 O3 /ZrO2 heterointerfaces, the resultant In2 O3 @ZrO2 exhibits superior activity and stability toward CO2 hydrogenation to methanol, which can afford a high methanol selectivity of 84.6% at a conversion of 10.4% at 290 °C, and 3.0 MPa with a methanol space-time yield of up to 0.29 gMeOH gcat -1 h-1 . Extensive characterization demonstrates that there is a strong correlation between the strong electronic In2 O3 -ZrO2 interaction and catalytic selectivity. At In2 O3 /ZrO2 heterointerfaces, the electron tends to transfer from ZrO2 to In2 O3 surface, which facilitates H2 dissociation and the hydrogenation of formate (HCOO*) and methoxy (CH3 O*) species to methanol. This study provides an insight into the In2 O3 -based catalysts and offers appealing opportunities for developing heterostructured CO2 hydrogenation catalysts with excellent activity.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Qiang Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lei Zhou
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Zheng-Chang Wei
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lei Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Jing-Jing Dai
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Hongbo Zhang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Tong-Liang Hu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| |
Collapse
|
23
|
Recent advances in the application of metal-organic frameworks (MOFs)-based nanocatalysts for direct conversion of carbon dioxide (CO2) to value-added chemicals. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
A Review on Green Hydrogen Valorization by Heterogeneous Catalytic Hydrogenation of Captured CO2 into Value-Added Products. Catalysts 2022. [DOI: 10.3390/catal12121555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The catalytic hydrogenation of captured CO2 by different industrial processes allows obtaining liquid biofuels and some chemical products that not only present the interest of being obtained from a very low-cost raw material (CO2) that indeed constitutes an environmental pollution problem but also constitute an energy vector, which can facilitate the storage and transport of very diverse renewable energies. Thus, the combined use of green H2 and captured CO2 to obtain chemical products and biofuels has become attractive for different processes such as power-to-liquids (P2L) and power-to-gas (P2G), which use any renewable power to convert carbon dioxide and water into value-added, synthetic renewable E-fuels and renewable platform molecules, also contributing in an important way to CO2 mitigation. In this regard, there has been an extraordinary increase in the study of supported metal catalysts capable of converting CO2 into synthetic natural gas, according to the Sabatier reaction, or in dimethyl ether, as in power-to-gas processes, as well as in liquid hydrocarbons by the Fischer-Tropsch process, and especially in producing methanol by P2L processes. As a result, the current review aims to provide an overall picture of the most recent research, focusing on the last five years, when research in this field has increased dramatically.
Collapse
|
25
|
Tang S, Feng Z, Han Z, Sha F, Tang C, Zhang Y, Wang J, Li C. Mononuclear Re Sites on In2O3 Catalyst for Highly Efficient CO2 Hydrogenation to Methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
The Co-In2O3 interaction concerning the effect of amorphous Co metal on CO2 hydrogenation to methanol. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
Long L, Xu K, Bing Tan K, Cai D, Yang Y, Zhou SF, Zhan G. Highly Active Mn-Cu Bimetallic Oxide Catalyst Assembled as 3D-printed Monolithic Agitating Paddles for Advanced Oxidation Process. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.118278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Shen C, Sun K, Zou R, Wu Q, Mei D, Liu CJ. CO 2 Hydrogenation to Methanol on Indium Oxide-Supported Rhenium Catalysts: The Effects of Size. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chenyang Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Kaihang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Rui Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Qinglei Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| | - Donghai Mei
- School of Environmental Science and Engineering, Tiangong University, Tianjin300387, China
| | - Chang-jun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin300072, China
| |
Collapse
|
29
|
Huang X, Lin Q, Lu L, Li M, Tang D. In 2O 3/CdIn 2S 4 heterojunction-based photoelectrochemical immunoassay of carcinoembryonic antigen with enzymatic biocatalytic precipitation for signal amplification. Anal Chim Acta 2022; 1228:340358. [PMID: 36127005 DOI: 10.1016/j.aca.2022.340358] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/19/2022]
Abstract
This work reported a split-type photoelectrochemical (PEC) immunoassay for the detection of carcinoembryonic antigen (CEA) based on target-induced biocatalytic precipitation (BCP) by using In2O3/CdIn2S4 heterojunctions as the photosensitizers. The synthesized In2O3/CdIn2S4 heterojunctions improved the efficiency of charge separation and shortened the electron convey path to enhance the photocurrent, thus exhibiting high conductivity and low complexation rates of photogenerated electrons and holes. In the presence of CEA, horseradish peroxidase (HRP) catalyzed 4-chloro-1-naphthol (4-CN) to produce benzo-4-chloro-hexadienone (4-CD) through H2O2. Then, 4-CD was deposited onto the surface of In2O3/CdIn2S4 to reduce the photocurrent and realized the signal amplification. The PEC immunoassay revealed an excellent photocurrent toward target CEA within a wide range of 0.01-50 ng mL-1 at a low limit of detection of 2.8 pg mL-1 under the optimum conditions. Multiple switching light excitation tests demonstrated the good reliability and stability of the fabricated PEC biosensor. The accuracy was acceptable in comparison with human CEA enzyme-linked immunosorbent assay (ELISA) kit.
Collapse
Affiliation(s)
- Xue Huang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qianyun Lin
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Liling Lu
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Meijin Li
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Dianping Tang
- Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
30
|
Zhu S, Li N, Zhang D, Yan T. Metal/oxide heterostructures derived from Prussian blue analogues for efficient photocatalytic CO2 hydrogenation to hydrocarbons. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Effect of preparation methods of ZnO/ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Green synthesis of microspherical-confined nano-Pd/In2O3 integrated with H-ZSM-5 as bifunctional catalyst for CO2 hydrogenation into dimethyl ether: A carbonized alginate templating strategy. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
33
|
Alabsi MH, Chen X, Wang X, Zhang M, Ramirez A, Duan A, Xu C, Cavallo L, Huang KW. Highly dispersed Pd nanoparticles supported on dendritic mesoporous CeZrZnOx for efficient CO2 hydrogenation to methanol. J Catal 2022. [DOI: 10.1016/j.jcat.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Cui M, Shao Z, Qu L, Liu X, Yu H, Wang Y, Zhang Y, Fu Z, Huang Y, Feng W. MOF-Derived In 2O 3 Microrods for High-Performance Photoelectrochemical Ultraviolet Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39046-39052. [PMID: 35981319 DOI: 10.1021/acsami.2c09968] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultraviolet photodetectors (UV PDs) have attracted extensive attention owing to their wide applications, such as optical communication, missile tracking, and fire warning. Wide-bandgap metal-oxide semiconductor materials have become the focus of high-performance UV PD development owing to their unique photoelectric properties and good stability. Compared with other wide-bandgap materials, studies on indium oxide (In2O3)-based photoelectrochemical (PEC) UV PDs are rare. In this work, we explore the photoresponse of In2O3-based PEC UV PDs for the first time. In2O3 microrods (MRs) were synthesized by a hydrothermal method with subsequent annealing. In2O3 MR PEC PDs have good UV photoresponse, showing a high responsivity of 21.19 mA/W and high specific detectivity of 2.03 × 1010 Jones, which surpass most aqueous-type PEC UV PDs. Moreover, In2O3 MR PEC PDs have good multicycle and long-term stability irradiated by 365 nm. Our results prove that In2O3 holds great promise in high-performance PEC UV PDs.
Collapse
Affiliation(s)
- MengQi Cui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zhitao Shao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - LiHang Qu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xin Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Huan Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yunxia Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yunxiao Zhang
- Tianjin Jinhang Technical Physics Institute, Tianjin 300308, China
| | - Zhendong Fu
- Tianjin Jinhang Technical Physics Institute, Tianjin 300308, China
| | - Yuewu Huang
- College of Science, Harbin University of Science and Technology, Harbin 150080, China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
35
|
Qiu C, Qian K, Yu J, Sun M, Cao S, Gao J, Yu R, Fang L, Yao Y, Lu X, Li T, Huang B, Yang S. MOF-Transformed In 2O 3-x@C Nanocorn Electrocatalyst for Efficient CO 2 Reduction to HCOOH. NANO-MICRO LETTERS 2022; 14:167. [PMID: 35976472 PMCID: PMC9385936 DOI: 10.1007/s40820-022-00913-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/13/2022] [Indexed: 05/05/2023]
Abstract
For electrochemical CO2 reduction to HCOOH, an ongoing challenge is to design energy efficient electrocatalysts that can deliver a high HCOOH current density (JHCOOH) at a low overpotential. Indium oxide is good HCOOH production catalyst but with low conductivity. In this work, we report a unique corn design of In2O3-x@C nanocatalyst, wherein In2O3-x nanocube as the fine grains dispersed uniformly on the carbon nanorod cob, resulting in the enhanced conductivity. Excellent performance is achieved with 84% Faradaic efficiency (FE) and 11 mA cm-2 JHCOOH at a low potential of - 0.4 V versus RHE. At the current density of 100 mA cm-2, the applied potential remained stable for more than 120 h with the FE above 90%. Density functional theory calculations reveal that the abundant oxygen vacancy in In2O3-x has exposed more In3+ sites with activated electroactivity, which facilitates the formation of HCOO* intermediate. Operando X-ray absorption spectroscopy also confirms In3+ as the active site and the key intermediate of HCOO* during the process of CO2 reduction to HCOOH.
Collapse
Affiliation(s)
- Chen Qiu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Kun Qian
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Jun Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China
| | - Shoufu Cao
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, People's Republic of China
| | - Jinqiang Gao
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
| | - Rongxing Yu
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA
| | - Youwei Yao
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, People's Republic of China
| | - Xiaoqing Lu
- School of Materials Science and Engineering, China University of Petroleum, Qingdao, Shandong, 266580, People's Republic of China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL, 60115, USA.
- X-Ray Science Division and Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL, 60439, USA.
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, People's Republic of China.
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, People's Republic of China.
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen, 518107, People's Republic of China.
| |
Collapse
|
36
|
Zhou S, Zeng HC. Boxlike Assemblages of Few-Layer MoS 2 Nanosheets with Edge Blockage for High-Efficiency Hydrogenation of CO 2 to Methanol. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shenghui Zhou
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| | - Hua Chun Zeng
- Department of Chemical and Biomolecular Engineering, College of Design and Engineering, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
37
|
Park S, Oh D, Ahn J, Kim JK, Kim DH, Kim S, Park C, Jung W, Kim ID. Promoting Ex-Solution from Metal-Organic-Framework-Mediated Oxide Scaffolds for Highly Active and Robust Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201109. [PMID: 35502659 DOI: 10.1002/adma.202201109] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Ex-solution catalysts, in which a host oxide is decorated with confined metallic nanoparticles, have exhibited breakthrough activity in various catalytic reactions. However, catalysts prepared by conventional ex-solution processes are limited by the low surface area of host oxides, the limited solubility of dopants, and the incomplete conversion of doped cations into metal catalysts. Here, the design of the host oxide structure is reconceptualized using a metal-organic framework (MOF) as an oxide precursor that can absorb a large quantity of ions while also promoting ex-solution at low temperatures (400-500 °C). The MOF-derived metal oxide host can readily incorporate metal cations, from which catalytic nanoparticles can be uniformly ex-solved owing to the short diffusion length in the nano-sized oxides. The distinct ex-solution behaviors of Pt, Pd, and Rh, and their bimetallic combinations are investigated. The MOF-driven mesoporous ZnO particles functionalized with PdPt catalysts ex-solved at 500 °C show benchmark-level of acetone oxidation activity as well as acetone-sensing characteristics by accelerating both oxygen chemisorption and acetone dissociation. Their findings provide a new route for the preparation of highly active catalysts by engineering the architecture and composition of the host oxide to facilitate the ex-solution process rationally.
Collapse
Affiliation(s)
- Seyeon Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - DongHwan Oh
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jaewan Ahn
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun Kyu Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Dong-Ha Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seunghyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Chungseong Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - WooChul Jung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Il-Doo Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
- Membrane Innovation Center for Anti-Virus & Air-Quality Control, KI Nanocentury, KAIST, 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
38
|
Zuo J, Na W, Zhang P, Yang X, Wen J, Zheng M, Wang H. Enhanced activity of CexZr1-xO2 solid solutions supported Cu-based catalysts for hydrogenation of CO2 to methanol. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Chang X, Han X, Pan Y, Hao Z, Chen J, Li M, Lv J, Ma X. Insight into the Role of Cu–ZrO 2 Interaction in Methanol Synthesis from CO 2 Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Han
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Yutong Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Ziwen Hao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Jiyi Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
40
|
Solid-State Synthesis of Pd/In2O3 Catalysts for CO2 Hydrogenation to Methanol. Catal Letters 2022. [DOI: 10.1007/s10562-022-04030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
41
|
Liang J, Wang F, Li W, Zhang J, Guo CL. Highly dispersed and stabilized Pd species on H2 pre-treated Al2O3 for anthraquinone hydrogenation and H2O2 production. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Ding H, Feng Y, Xu Y, Xue X, Feng R, Yan T, Yan L, Wei Q. Self-powered photoelectrochemical aptasensor based on MIL-68(In) derived In 2O 3 hollow nanotubes and Ag doped ZnIn 2S 4 quantum dots for oxytetracycline detection. Talanta 2022; 240:123153. [PMID: 34973550 DOI: 10.1016/j.talanta.2021.123153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/11/2021] [Accepted: 12/11/2021] [Indexed: 02/07/2023]
Abstract
A self-powered photoelectrochemical (PEC) aptasensor was constructed based on MIL-68(In) derived indium oxide hollow nanotubes (In2O3 HNs) and Ag-doped ZnIn2S4 quantum dots (QDs) as sensing matrix for the ultrasensitive detection of oxytetracycline (OTC). The hollow tube structure of the designed photoelectric active platform provided abundant active sites and a larger specific surface area for the immobilization of target recognition unit. The coupling of Ag:ZnIn2S4 QDs and In2O3 HNs can accelerate the transmit and separation of photoinduced charge, and thus greatly increasing the intensity of photocurrent signal. Then, the well-constructed OTC-aptamer was anchored on the modified photoelectrode as an accurate capturing element, achieving the specific detection of analyte. Under optimal conditions, the photocurrent intensity of the PEC aptasensor decreases linearly, with a linear response range of 10-4 -10 nmol/L, and a limit of detection (LOD) of 3.3 × 10-5 nmol/L (S/N = 3). The developed self-powered aptasensor with excellent reproducibility, stability, and selectivity, provides a potential way to detect antibiotic residues in environmental media.
Collapse
Affiliation(s)
- Haolin Ding
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Yixuan Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Yifei Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Xiaodong Xue
- Shandong Academy of Environmental Science Co., Ltd, Jinan, 250013, PR China
| | - Rui Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Tao Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China.
| | - Liangguo Yan
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
43
|
|
44
|
Qi L, Dai J, Liao Y, Tian J, Sun D. Tuning the electronic property of Pd nanoparticles by encapsulation within ZIF-67 shells towards enhanced performance in 1,3-butadiene hydrogenation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02156g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The low olefin selectivity of Pd-based catalysts is a long-term challenge for the selective hydrogenation of 1,3-butadiene.
Collapse
Affiliation(s)
- Lixue Qi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen, 361005, China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen, 361005, China
| | - Yichen Liao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen, 361005, China
| | - Jian Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen, 361005, China
| | - Daohua Sun
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, No. 422, Siming South Road, Xiamen, 361005, China
| |
Collapse
|
45
|
Cai Z, Huang M, Dai J, Zhan G, Sun FL, Zhuang GL, Wang Y, Tian P, Chen B, Ullah S, Huang J, Li Q. Fabrication of Pd/In2O3 Nanocatalysts Derived from MIL-68(In) Loaded with Molecular Metalloporphyrin (TCPP(Pd)) Toward CO2 Hydrogenation to Methanol. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zhongjie Cai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Meng Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Jiajun Dai
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Guowu Zhan
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Fu-li Sun
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Gui-Lin Zhuang
- Institute of Industrial Catalysis, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, P. R. China
| | - Yiying Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Pan Tian
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Bin Chen
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
| | - Shafqat Ullah
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Jiale Huang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, 422 Siming South Road, Xiamen, Fujian 361005, P. R. China
- College of Chemical Engineering, Integrated Nanocatalysts Institute (INCI), Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian 361021, P. R. China
- College of Food and Biology Engineering, Jimei University, 185 Yinjiang Road, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
46
|
|
47
|
Preparation of supported In2O3/Pd nanocatalysts using natural pollen as bio-templates for CO2 hydrogenation to methanol: Effect of acid-etching on template. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
48
|
Liang Q, Zhao S, Li Z, Wu Z, Shi H, Huang H, Kang Z. Converting Organic Wastewater into CO Using MOFs-Derived Co/In 2O 3 Double-Shell Photocatalyst. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40754-40765. [PMID: 34423971 DOI: 10.1021/acsami.1c12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The photocatalytic conversion of organic wastewater into value-added chemicals is a promising strategy to solve the environmental issue and energy crisis. Herein, Co/In2O3 nanotubes with a double-shell structure, as a highly efficient photocatalyst, are synthesized by a one-step calcination method. The Co/In2O3 heterostructure shows an outstanding photocatalytic CO2 reduction performance of 4902 μmol h-1 g-1. Notably, these Co/In2O3 photocatalysts also achieve CO2 self-generation and in situ reduction conversion in acid organic wastewater (phenol solution), in which the high CO2 (47.5 μmol h-1 g-1) and CO (0.9 μmol h-1 g-1) evolution rates are demonstrated under solar irradiation. Transient photovoltage (TPV) tests demonstrate that Co nanoparticles on Co/In2O3 double-shell heterostructure serve as the CO2 reduction sites for the effective capture and stabilization of the photogenerated electrons.
Collapse
Affiliation(s)
- Qian Liang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shuang Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhongyu Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhenyu Wu
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Hong Shi
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials Laboratory (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa 999078, Macau SAR, China
- Institute of Advanced Materials, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
49
|
Zhang J, An B, Li Z, Cao Y, Dai Y, Wang W, Zeng L, Lin W, Wang C. Neighboring Zn-Zr Sites in a Metal-Organic Framework for CO 2 Hydrogenation. J Am Chem Soc 2021; 143:8829-8837. [PMID: 34096297 DOI: 10.1021/jacs.1c03283] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ZrZnOx is active in catalyzing carbon dioxide (CO2) hydrogenation to methanol (MeOH) via a synergy between ZnOx and ZrOx. Here we report the construction of Zn2+-O-Zr4+ sites in a metal-organic framework (MOF) to reveal insights into the structural requirement for MeOH production. The Zn2+-O-Zr4+ sites are obtained by postsynthetic treatment of Zr6(μ3-O)4(μ3-OH)4 nodes of MOF-808 by ZnEt2 and a mild thermal treatment to remove capping ligands and afford exposed metal sites for catalysis. The resultant MOF-808-Zn catalyst exhibits >99% MeOH selectivity in CO2 hydrogenation at 250 °C and a high space-time yield of up to 190.7 mgMeOH gZn-1 h-1. The catalytic activity is stable for at least 100 h. X-ray absorption spectroscopy (XAS) analyses indicate the presence of Zn2+-O-Zr4+ centers instead of ZnmOn clusters. Temperature-programmed desorption (TPD) of hydrogen and H/D exchange tests show the activation of H2 by Zn2+ centers. Open Zr4+ sites are also critical, as Zn2+ centers supported on Zr-based nodes of other MOFs without open Zr4+ sites fail to produce MeOH. TPD of CO2 reveals the importance of bicarbonate decomposition under reaction conditions in generating open Zr4+ sites for CO2 activation. The well-defined local structures of metal-oxo nodes in MOFs provide a unique opportunity to elucidate structural details of bifunctional catalytic centers.
Collapse
Affiliation(s)
- Jingzheng Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Bing An
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Zhe Li
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yonghua Cao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Yiheng Dai
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Wangyang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Lingzhen Zeng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Wenbin Lin
- Department of Chemistry, University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P.R. China
| |
Collapse
|
50
|
Abstract
A novel gold catalyst supported by In2O3-ZrO2 with a solid solution structure shows a methanol selectivity of 70.1% and a methanol space–time yield (STY) of 0.59 gMeOH h−1 gcat−1 for CO2 hydrogenation to methanol at 573 K and 5 MPa. The ZrO2 stabilizes the structure of In2O3, increases oxygen vacancies, and enhances CO2 adsorption, causing the improved activity.
Collapse
|