1
|
Jiang Y, Fu H, Liang Z, Zhang Q, Du Y. Rare earth oxide based electrocatalysts: synthesis, properties and applications. Chem Soc Rev 2024; 53:714-763. [PMID: 38105711 DOI: 10.1039/d3cs00708a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
As an important strategic resource, rare earths (REs) constitute 17 elements in the periodic table, namely 15 lanthanides (Ln) (La-Lu, atomic numbers from 57 to 71), scandium (Sc, atomic number 21) and yttrium (Y, atomic number 39). In the field of catalysis, the localization and incomplete filling of 4f electrons endow REs with unique physical and chemical properties, including rich electronic energy level structures, variable coordination numbers, etc., making them have great potential in electrocatalysis. Among various RE catalytic materials, rare earth oxide (REO)-based electrocatalysts exhibit excellent performances in electrocatalytic reactions due to their simple preparation process and strong structural variability. At the same time, the electronic orbital structure of REs exhibits excellent electron transfer ability, which can reduce the band gap and energy barrier values of rate-determining steps, further accelerating the electron transfer in the electrocatalytic reaction process; however, there is a lack of systematic review of recent advances in REO-based electrocatalysis. This review systematically summarizes the synthesis, properties and applications of REO-based nanocatalysts and discusses their applications in electrocatalysis in detail. It includes the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), hydrogen oxidation reaction (HOR), oxygen reduction reaction (ORR), carbon dioxide reduction reaction (CO2RR), methanol oxidation reaction (MOR), nitrogen reduction reaction (NRR) and other electrocatalytic reactions and further discusses the catalytic mechanism of REs in the above reactions. This review provides a timely and comprehensive summary of the current progress in the application of RE-based nanomaterials in electrocatalytic reactions and provides reasonable prospects for future electrocatalytic applications of REO-based materials.
Collapse
Affiliation(s)
- Yong Jiang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Hao Fu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhong Liang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
2
|
Yook H, Hwang J, Yeo W, Bang J, Kim J, Kim TY, Choi JS, Han JW. Design Strategies for Hydroxyapatite-Based Materials to Enhance Their Catalytic Performance and Applicability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2204938. [PMID: 35917488 DOI: 10.1002/adma.202204938] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Hydroxyapatite (HAP) is a green catalyst that has a wide range of applications in catalysis due to its high flexibility and multifunctionality. These properties allow HAP to accommodate a large number of catalyst modifications that can selectively improve the catalytic performance in target reactions. To date, many studies have been conducted to elucidate the effect of HAP modification on the catalytic activities for various reactions. However, systematic design strategies for HAP catalysts are not established yet due to an incomplete understanding of underlying structure-activity relationships. In this review, tuning methods of HAP for improving the catalytic performance are discussed: 1) ionic composition change, 2) morphology control, 3) incorporation of other metal species, and 4) catalytic support engineering. Detailed mechanisms and effects of structural modulations on the catalytic performances for attaining the design insights of HAP catalysts are investigated. In addition, computational studies to understand catalytic reactions on HAP materials are also introduced. Finally, important areas for future research are highlighted.
Collapse
Affiliation(s)
- Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jinwoo Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Woonsuk Yeo
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jungup Bang
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jaeyoung Kim
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Tae Yong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jae-Soon Choi
- Catalyst R&D Division, LG Chem Ltd, 188, Munji-ro, Yuseong-gu, Daejeon, 34122, Republic of Korea
| | - Jeong Woo Han
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
3
|
Stonkus O, Kibis L, Slavinskaya E, Zadesenets A, Garkul I, Kardash T, Stadnichenko A, Korenev S, Podyacheva O, Boronin A. Pd-Ceria/CNMs Composites as Catalysts for CO and CH 4 Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4257. [PMID: 37374441 DOI: 10.3390/ma16124257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023]
Abstract
The application of composite materials as catalysts for the oxidation of CO and other toxic compounds is a promising approach for air purification. In this work, the composites comprising palladium and ceria components supported on multiwall carbon nanotubes, carbon nanofibers and Sibunit were studied in the reactions of CO and CH4 oxidation. The instrumental methods showed that the defective sites of carbon nanomaterials (CNMs) successfully stabilize the deposited components in a highly-dispersed state: PdO and CeO2 nanoparticles, subnanosized PdOx and PdxCe1-xO2-δ clusters with an amorphous structure, as well as single Pd and Ce atoms, are formed. It was shown that the reactant activation process occurs on palladium species with the participation of oxygen from the ceria lattice. The presence of interblock contacts between PdO and CeO2 nanoparticles has an important effect on oxygen transfer, which consequently affects the catalytic activity. The morphological features of the CNMs, as well as the defect structure, have a strong influence on the particle size and mutual stabilization of the deposited PdO and CeO2 components. The optimal combination of highly dispersed PdOx and PdxCe1-xO2-δ species, as well as PdO nanoparticles in the CNTs-based catalyst, makes it highly effective in both studied oxidation reactions.
Collapse
Affiliation(s)
- Olga Stonkus
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Lidiya Kibis
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Elena Slavinskaya
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Andrey Zadesenets
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Ilia Garkul
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Tatyana Kardash
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Andrey Stadnichenko
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Sergey Korenev
- Nikolaev Institute of Inorganic Chemistry, Pr. Lavrentieva 3, 630090 Novosibirsk, Russia
| | - Olga Podyacheva
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| | - Andrei Boronin
- Boreskov Institute of Catalysis, Pr. Lavrentieva 5, 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Deng Y, Fu L, Song W, Ouyang L, Yuan S. Transition metal and Pr co-doping induced oxygen vacancy in Pd/CeO2 catalyst boosts low-temperature CO oxidation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Das D, Prakash J, Goutam UK, Manna S, Gupta SK, Sudarshan K. Oxygen vacancy and valence engineering in CeO 2 through distinct sized ion doping and their impact on oxygen reduction reaction catalysis. Dalton Trans 2022; 51:18572-18582. [PMID: 36444845 DOI: 10.1039/d2dt03198a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Defect tuning in ceria to enhance its catalytic properties is a subject of great interest for the scientific community owing to the growing demand for catalytic materials in drug, automobile and chemical industries. Doping induced defect engineering was found to be one of the most sought out strategies particularly in oxides for achieving multifunctionality. Here, in this study, we have doped ceria with distinct sized trivalent rare-earth ions, namely, Y3+, Eu3+ and La3+, using combustion techniques. Positron annihilation lifetime spectroscopy (PALS) suggested enhanced defect density with doping in general and higher concentration of oxygen vacancies in La3+ doped ceria compared to Y3+ and Eu3+ counterparts. X-ray photoelectron spectroscopy (XPS) suggested the existence of both Ce3+ and Ce4+, with the former having higher fraction in CeO2:La3+ compared to CeO2:Y3+. The electron transfer resistance (Rct) reduced in all the doped samples when compared to undoped ceria and they demonstrated improved catalytic activity towards the oxygen reduction reaction (ORR). The highest reduction in Rct was seen in the 5% La doped sample owing to the very high concentration of oxygen vacancies and Ce3+/Ce4+ ratio and CeO2:5.0% La3+ showed the best performance towards ORR electrocatalysis. The studies are expected to help in further tuning the catalysts in terms of dopant concentrations, and in future work, the strategy will be to control the Ce3+/Ce4+ ratio and see its implication in both catalytic and magnetic applications.
Collapse
Affiliation(s)
- Debarati Das
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - Jyoti Prakash
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Materials Group, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - U K Goutam
- Technical Physics Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - S Manna
- Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India.,Analytical Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India
| | - Santosh K Gupta
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| | - K Sudarshan
- Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai-400085, India. .,Homi Bhabha National Institute, Anushaktinagar, Mumbai-400094, India
| |
Collapse
|
6
|
Huang Q, Zhao P, Wang W, Lv L, Zhang W, Pan B. In Situ Fabrication of Highly Dispersed Co-Fe-Doped-δ-MnO 2 Catalyst by a Facile Redox-Driving MOFs-Derived Method for Low-Temperature Oxidation of Toluene. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53872-53883. [PMID: 36426993 DOI: 10.1021/acsami.2c16620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cost-efficient and durable manganese-based catalysts are in great demand for the catalytic elimination of volatile organic compounds (VOCs), which are dominated not only by the nanostructures but also by the oxygen vacancies and Mn-O bond in the catalysts. Herein, a series of nanostructured Co-Fe-doped-δ-MnO2 catalysts (Co-Fe-δ-MnO2) with high dispersion were in situ fabricated by employing metal-organic-frameworks (MOFs) as reducing agents, dopants, and templates all at the same time. The as-obtained Co-Fe-δ-MnO2-20% catalyst exhibited robust durability and high catalytic activity (225 °C) for toluene combustion even in the presence of 5 vol % water vapor, which is 50 °C lower than that of pristine δ-MnO2. Various characterizations revealed that the homogeneously dispersed codoping of Co and Fe ions into δ-MnO2 promotes the generation of oxygen vacancies and weakens the strength of the Mn-O bond, thus increasing the amount of adsorbed oxygen (Oads) and improving the mobility of lattice oxygen (Olatt). Meanwhile, due to successfully inheriting the framework structures of MOFs, the obtained catalyst exhibited a high surface area and three-dimensional mesoporous structure, which contributes to diffusion and increases the number of active sites. Moreover, in situ DRIFTS results confirmed that the toluene degradation mechanism on the Co-Fe-δ-MnO2-20% follows the MVK mechanism and revealed that more Oads and high-mobility Olatt induced by this novel method contribute to accumulating and mineralizing key intermediates (benzoate) and thus promote toluene oxidation. In conclusion, this work stimulates the opportunities to develop Co-Fe-δ-MnO2 as a class of nonprecious-metal-based catalysts for controlling VOC emissions.
Collapse
Affiliation(s)
- Qianlin Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Puzhen Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Weiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Lu Lv
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing210023, China
| |
Collapse
|
7
|
Shin D, Huang R, Jang MG, Choung S, Kim Y, Sung K, Kim TY, Han JW. Role of an Interface for Hydrogen Production Reaction over Size-Controlled Supported Metal Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dongjae Shin
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Rui Huang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Myeong Gon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Seokhyun Choung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Youngbi Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kiheon Sung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Tae Yong Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
8
|
Qadeer N, Jabeen N, Khan LU, Sohail M, Zaheer M, Vaqas M, Kanwal A, Sajid F, Qamar S, Akhter Z. Hydrothermal synthesis and characterization of transition metal (Mn/Fe/Cu) co-doped cerium oxide-based nano-additives for potential use in the reduction of exhaust emission from spark ignition engines. RSC Adv 2022; 12:15564-15574. [PMID: 35685173 PMCID: PMC9125985 DOI: 10.1039/d2ra01954j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The goal of this work was to synthesize new cerium oxide-based nano-additives to minimise emissions from spark ignition (SI) engines fueled with gasoline blends, such as carbon monoxide (CO), unburned hydrocarbons (HC) and oxides of nitrogen (NOx). To investigate the effect of transition metal dopants on their respective catalytic oxidation activity, nano-sized CeO2 catalysts co-doped with Mn, Fe, Cu and Ag ions were successfully produced by a simple hydrothermal technique. The synthesis of nano-catalysts with cubic fluorite geometry was confirmed by XRD data. The addition of transition metal ions to the CeO2 lattice increased the concentration of structural defects like oxygen vacancies and Ce3+ ions, which are advantageous for the catalytic oxidation reaction, as also supported by XAFS and RAMAN analysis. Further, nano-gasoline fuel emission parameters are measured and compared to straight gasoline fuel. The results demonstrated that harmful exhaust pollutants such as CO, HC and NOx were significantly reduced. The high surface area, better redox characteristics and presence of additional oxygen vacancy sites or Ce3+ ions have been linked to the improved catalytic performance of the synthesized catalyst. Illustrating the synthesis of doped and undoped CeO2 nanomaterial and its potential application as a promising catalyst for additives to minimize emissions from spark ignition (SI) engines fueled with gasoline blends.![]()
Collapse
Affiliation(s)
- Nazish Qadeer
- Department of Chemistry, Quaid-i-Azam University (QAU) Islamabad 45320 Pakistan
| | - Naila Jabeen
- Nano Sciences and Technology Division, National Centre for Physics QAU Campus, Shahdara Valley Road, P.O. Box 2141 Islamabad 44000 Pakistan
| | - Latif U Khan
- Synchrotron-Light for Experimental Science and Applications in the Middle East (SESAME) P.O. Box 7 Allan 19252 Jordan
| | - Manzar Sohail
- School of Natural Sciences, National University of Sciences and Technology (NUST) H-12 Islamabad Pakistan
| | - Muhammad Zaheer
- SBA School of Science and Engineering, Lahore University of Management Sciences (LUMS) Pakistan
| | | | - Afia Kanwal
- Department of Chemistry, Quaid-i-Azam University (QAU) Islamabad 45320 Pakistan
| | - Fatima Sajid
- Department of Chemistry, Quaid-i-Azam University (QAU) Islamabad 45320 Pakistan
| | - Samina Qamar
- Department of Chemistry, Quaid-i-Azam University (QAU) Islamabad 45320 Pakistan
| | - Zareen Akhter
- Department of Chemistry, Quaid-i-Azam University (QAU) Islamabad 45320 Pakistan
| |
Collapse
|
9
|
Wang J, Cheng DG, Chen F, Zhan X. Chlorine-Decorated Ceria Nanocubes for Facilitating Low-Temperature Cyclohexane Oxidative Dehydrogenation: Unveiling the Decisive Role of Surface Species and Acid Properties. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Jinling Wang
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Dang-guo Cheng
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Fengqiu Chen
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Xiaoli Zhan
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| |
Collapse
|
10
|
Jang MG, Yoon S, Shin D, Kim HJ, Huang R, Yang E, Kim J, Lee KS, An K, Han JW. Boosting Support Reducibility and Metal Dispersion by Exposed Surface Atom Control for Highly Active Supported Metal Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Myeong Gon Jang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sinmyung Yoon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dongjae Shin
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyung Jun Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Rui Huang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Euiseob Yang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jihun Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kug-Seung Lee
- Beamline Division, Pohang Accelerator Laboratory (PAL), Pohang, Gyeongbuk 37673, Republic of Korea
| | - Kwangjin An
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
11
|
Deng Y, Tian P, Liu S, He H, Wang Y, Ouyang L, Yuan S. Enhanced catalytic performance of atomically dispersed Pd on Pr-doped CeO 2 nanorod in CO oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127793. [PMID: 34839976 DOI: 10.1016/j.jhazmat.2021.127793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Single-atom noble metal catalysts have been widely studied for catalytic oxidation of CO. Regulating the coordination environment of single metal atom site is an effective strategy to improve the intrinsic catalytic activity of single atom catalyst. In this work, single atom Pd catalyst supported on Pr-doped CeO2 nanorods was prepared, and the performance and nature of Pr-coordinated atomic Pd site in CO catalytic oxidation are systematically investigated. The structure characterization using AC-HAADF-STEM, EXAFS, XRD and Raman spectroscopy demonstrate the formation of single atom Pd site and abundant surface oxygen vacancies on the surface of Pr-doped CeO2 nanorod. With the combination of the XPS characterization and DFT calculations, the oxidation state of Pd on Pr-doped CeO2 nanorod is determined lower than that on CeO2 nanorod. The turnover frequency of CO oxidation is markedly increased from 8.4 × 10-3 to 31.9 × 10-3 s with Pr-doping at 130 ºC and GHSV of 70,000 h-1. Combined with kinetic studies, DRIFT and DFT calculations, the doped-Pr atoms reduced the formation energy of oxygen vacancies and generate more oxygen vacancies around the atomically dispersed Pd sites on the surface of cerium oxide, which reduces the dissociation energy of oxygen, thereby accelerating the reaction rate of CO oxidation.
Collapse
Affiliation(s)
- Yanbo Deng
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Pengfei Tian
- Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, China Key Laboratory of Pressure Systems and Safety (Ministry of Education), School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shijie Liu
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Huaqiang He
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yuan Wang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Like Ouyang
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, College of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
12
|
Sarkodie B, Shen B, Asinyo B, Hu Y, Jiang J, Li C. Highly efficient Au/Fe 2O 3 for CO oxidation: The vital role of spongy Fe 2O 3 toward high catalytic activity and stability. J Colloid Interface Sci 2022; 608:2181-2191. [PMID: 34815090 DOI: 10.1016/j.jcis.2021.09.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/10/2021] [Accepted: 09/19/2021] [Indexed: 11/26/2022]
Abstract
Supported gold catalysts have drawn great attention for many decades due to their outstanding performance in remedying the environment from carbon monoxide (CO) pollution. In this study, due to the large surface area of spongy Fe2O3, fabricated by salt-assisted ultrasonic spray pyrolysis, a considerable amount of Au was loaded on spongy Fe2O3 compared to low-surface-area non-spongy Fe2O3. It is seen that the spongy Fe2O3 catalyst loaded with Au has an interface that can be extremely active for CO desorption and O2 activation. That means it has high catalytic activity in CO oxidation than non-spongy and low surface area Fe2O3 loaded with Au. Also, the incorporation of Au in low alkaline condition further enhances the interaction between Au and Fe2O3, providing more active sites. This made the catalyst to have better activity, good stability over 60 hrs, and there was no carbonate on its surface. It had full conversion at 30 °C on 120 L g-1h-1 with high TOF (2.2 s-1).
Collapse
Affiliation(s)
- Bismark Sarkodie
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Bolei Shen
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Benjamin Asinyo
- Department of Industrial Art, Kwame Nkrumah University of Science and Technology, PMB, Kumasi, Ghana
| | - Yanjie Hu
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiechao Jiang
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunzhong Li
- Shanghai Environmental Friendly Materials Technical Service Platform, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|