1
|
Radina AD, Baidyshev VS, Chepkasov IV, Matsokin NA, Altalhi T, Yakobson BI, Kvashnin AG. Theoretical study of adsorption properties and CO oxidation reaction on surfaces of higher tungsten boride. Sci Rep 2024; 14:12788. [PMID: 38834596 DOI: 10.1038/s41598-024-63676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024] Open
Abstract
Most modern catalysts are based on precious metals and rear-earth elements, making some of organic synthesis reactions economically insolvent. Density functional theory calculations are used here to describe several differently oriented surfaces of the higher tungsten boride WB5-x, together with their catalytic activity for the CO oxidation reaction. Based on our findings, WB5-x appears to be an efficient alternative catalyst for CO oxidation. Calculated surface energies allow the use of the Wulff construction to determine the equilibrium shape of WB5-x particles. It is found that the (010) and (101) facets terminated by boron and tungsten, respectively, are the most exposed surfaces for which the adsorption of different gaseous agents (CO, CO2, H2, N2, O2, NO, NO2, H2O, NH3, SO2) is evaluated to reveal promising prospects for applications. CO oxidation on B-rich (010) and W-rich (101) surfaces is further investigated by analyzing the charge redistribution during the adsorption of CO and O2 molecules. It is found that CO oxidation has relatively low energy barriers. The implications of the present results, the effects of WB5-x on CO oxidation and potential application in the automotive, chemical, and mining industries are discussed.
Collapse
Affiliation(s)
- Aleksandra D Radina
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Viktor S Baidyshev
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Ilya V Chepkasov
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Nikita A Matsokin
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205
| | - Tariq Altalhi
- Chemistry Department, Taif University, Al Hawiyah, 26571, Taif, Saudi Arabia
| | - Boris I Yakobson
- Chemistry Department, Taif University, Al Hawiyah, 26571, Taif, Saudi Arabia
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Alexander G Kvashnin
- Skolkovo Innovation Center, Skolkovo Institute of Science and Technology, Bolshoy Boulevard 30, bld. 1, Moscow, Russia, 121205.
| |
Collapse
|
2
|
Tang H, Ang Chen Z, Wu M, Li S, Ye Z, Zhi M. Au-CeO 2 composite aerogels with tunable Au nanoparticle sizes as plasmonic photocatalysts for CO 2 reduction. J Colloid Interface Sci 2024; 653:316-326. [PMID: 37717432 DOI: 10.1016/j.jcis.2023.09.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/05/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Tuning the size of Au nanoparticles is always an interesting task when constructing Au/semiconductor heterojunctions for surface plasmon resonance-enhanced photocatalysis. In particular, the size of Au nanoparticles in the newly emerging "plasmonic aerogel" photocatalyst concept could approach the size of the semiconductor phase. This work provides an alternative route to realize the size tuning of Au nanoparticles in Au-CeO2 composite aerogels to some extent, within the framework of the well-established epoxide addition sol-gel method. The size tuning is achieved by exploiting the multi-functionalities of a mixed organic acid additive containing a thiol group in the gelation step. The obtained aerogel photocatalysts are composed of a porous backbone of interconnected CeO2 nanoparticles and Au nanoparticles, and the size of Au nanoparticles ranges from ∼30 nm to sub-10 nm, while the size of CeO2 remains at ∼15-10 nm. The surface plasmon resonance peak position and intensity contributed by the Au nanoparticles then vary accordingly. Photocatalytic CO2 reduction at the gas-solid interface is chosen as a model reaction to study the effect of Au nanoparticle size on the photocatalytic activity of composite aerogel photocatalysts. The addition of Au nanoparticles undoubtedly enhances the overall activity of the CeO2 aerogel photocatalyst, while the degree of enhancement (in terms of total charge consumption) and product selectivity (CH4 or CO) are different and correlated with the size of the Au nanoparticles. The best performance can be achieved in a composite in which the Au sizes are the smallest.
Collapse
Affiliation(s)
- Hao Tang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Zi Ang Chen
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Muchen Wu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China
| | - Shunbo Li
- Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronics Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ziran Ye
- Department of Applied Physics, College of Science, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Mingjia Zhi
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, PR China.
| |
Collapse
|
3
|
Zhang J, Zhu B, Zhang L, Yu J. Femtosecond transient absorption spectroscopy investigation into the electron transfer mechanism in photocatalysis. Chem Commun (Camb) 2023; 59:688-699. [PMID: 36598049 DOI: 10.1039/d2cc06300j] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Femtosecond transient absorption spectroscopy (fs-TAS) is a powerful technique for monitoring the electron transfer kinetics in photocatalysis. Several important works have successfully elucidated the electron transfer mechanism in heterojunction photocatalysts (HPs) using fs-TAS measurements, and thus a timely summary of recent advances is essential. This feature article starts with a thorough interpretation of the operating principle of fs-TAS equipment, and the fundamentals of the fs-TAS spectra. Subsequently, the applications of fs-TAS in analyzing the dynamics of photogenerated carriers in semiconductor/metal HPs, semiconductor/carbon HPs, semiconductor/semiconductor HPs, and multicomponent HPs are discussed in sequence. Finally, the significance of fs-TAS in revealing the ultrafast interfacial electron transfer process in HPs is summarized, and further research on the applications of fs-TAS in photocatalysis is proposed. This feature article will provide deep insight into the mechanism of the enhanced photocatalytic performance of HPs from the perspective of electron transfer kinetics.
Collapse
Affiliation(s)
- Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China.
| |
Collapse
|
4
|
Jamil YMS, Awad MAH, Al-Maydama HMA, Alhakimi AN, Shakdofa MME, Mohammed SO. Gold nanoparticles loaded on TiO2 nanoparticles doped with N2 as an efficient electrocatalyst for glucose oxidation: preparation, characterization, and electrocatalytic properties. J Anal Sci Technol 2022. [DOI: 10.1186/s40543-022-00363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractA powder of titanium oxide nanoparticles (TiO2 NPs) was synthesized in this study by anodizing in 0.7 M HClO4 and then annealing in N2 at 450 °C for 3 h to produce TiO2 NPs-N2 powder as a catalyst. These TiO2 NPs-N2 nanoparticles were then encrusted with Au nanoparticles utilizing the photodeposition procedure with tetrachloroauric acid (HAuCl4) and isopropanol as sacrificial donors. With a surface area of 121 m2g−1, the Au NPs/TiO2 NPs-N2 powder catalyst has a high surface area, according to the Barrett–Joyner–Halenda technique. According to X-ray diffraction (XRD) analysis, TiO2 NPs-N2 contained uniformly integrated Au nanoparticles with an average crystallite size of about 26.8 nm. The XRD patterns showed that the prepared Au NPs/TiO2 NPs-N2 were crystallites and nano-sized. The transmission electron microscopy image revealed the spherical shape of the nanoparticles and their tendency for agglomeration. Utilizing the cyclic voltammetry, the electrochemical properties of the catalyst TiO2 NPs powders in a basic glucose solution were investigated. The electrocatalytic activity and stability of the loaded Au NPs/TiO2 NPs-N2 powder on the working electrode for the electrocatalytic oxidation of glucose were astonishingly high. The Au NPs/TiO2 NPs-N2 catalyst demonstrated electrocatalytic characteristics that were superior to a commercially available polycrystalline gold electrode in the application involving glucose alkaline fuel cells.
Collapse
|
5
|
Wang K, Yoshiiri K, Rosa L, Wei Z, Juodkazis S, Ohtani B, Kowalska E. TiO2/Au/TiO2 plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible-light irradiation. Catal Today 2022. [DOI: 10.1016/j.cattod.2021.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
6
|
Xu H, Li X, Hu W, Yu Z, Zhou H, Zhu Y, Lu L, Si C. Research Progress of Highly Efficient Noble Metal Catalysts for the Oxidation of 5-Hydroxymethylfurfural. CHEMSUSCHEM 2022; 15:e202200352. [PMID: 35575041 DOI: 10.1002/cssc.202200352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
5-hydroxymethylfurfural (HMF) is considered to be one of the most pivotal multifunctional biomass platform chemicals. This Review discusses recent advances in catalytic oxidation of HMF towards high-value products. The reaction mechanism of different noble metals and the path of HMF oxidation to high-value products have been deeply investigated in the noble metal catalytic system. The reaction mechanisms of different noble metals and HMF conversion paths were compared in detail. Moreover, the factors affecting the performance of different noble metal catalysts were summarized. Finally, effective strategies were put forward to improve the catalytic performance of noble metal catalysts. The purpose is to provide a valuable reference for the academic research on the preparation of oxidation products from biomass-based HMF and the industrial application of noble metal catalysts.
Collapse
Affiliation(s)
- Haocheng Xu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaoyun Li
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Wenxuan Hu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zhihao Yu
- Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa, 850000, P. R. China
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Huanran Zhou
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yameng Zhu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Lefu Lu
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
- School of Agriculture, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Chuanling Si
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
7
|
Yoshiiri K, Karabiyik B, Wang K, Wei Z, Colbeau-Justin C, Kowalska E. The property-governed activity of silver-modified titania photocatalysts: The influence of titania matrix. J Chem Phys 2022; 156:244706. [DOI: 10.1063/5.0097762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Commercial titania photocatalysts were modified with silver nanoparticles (NPs) by the photodeposition method in the presence/absence of methanol. The obtained photocatalysts were characterized by XRD, XPS, diffuse reflectance spectroscopy, STEM, and time-resolved microwave conductivity (TRMC) methods. The photocatalytic activity was tested under UV/vis irradiation for (i) methanol dehydrogenation (during silver deposition), (ii) oxygen evolution with in situ silver deposition, and (iii) oxidative decomposition of acetic acid, as well as under vis irradiation for 2-propanol oxidation. The action spectra of 2-propanol oxidation were also performed. It has been confirmed that modification of titania with silver causes significant improvement of photocatalytic activity under both UV and vis irradiation as silver works as an electron scavenger (TRMC data) and vis activator (possibly by an energy transfer mechanism). The obtained activities differ between titania samples significantly, suggesting that the type of crystalline phase, particle/crystallite sizes, and electron traps’ density are crucial for both the properties of formed silver deposits and resultant photocatalytic activity. It might be concluded that, under UV irradiation, (i) high crystallinity and large specific surface area are recommended for rutile- and anatase-rich samples, respectively, during hydrogen evolution, (ii) mixed crystalline phases cause a high rate of oxygen evolution from water, and (iii) anatase phase with fine silver NPs results in efficient decomposition of acetic acid, whereas under vis irradiation the aggregated silver NPs (broad localized surface plasmon resonance peak) on the rutile phase are promising for oxidation reactions.
Collapse
Affiliation(s)
- Kenta Yoshiiri
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
| | - Baris Karabiyik
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
| | - Kunlei Wang
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
- Northwest Research Institute, Co. Ltd. of C.R.E.C., Lanzhou, China
| | - Zhishun Wei
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, People's Republic of China
| | | | - Ewa Kowalska
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Institute for Catalysis (ICAT), Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Xu K, Wang Q. Simple self-organization-based synthesis of gold nanoparticle-implanted ZnO aerogels with good sensing performance to gaseous ethanol. NANOTECHNOLOGY 2022; 33:215601. [PMID: 35168215 DOI: 10.1088/1361-6528/ac5541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Simple fabrication of metal-modified oxide aerogels is expected but remains challenging. This work presents a sample one-pot synthesis method for gold nanoparticle (NP) implanted ZnO (Au-ZnO) aerogels just by sequentially adding (CH3COO)2Zn and NaBH4solutions into a pre-prepared Au colloidal solution. The typically fabricated Au-ZnO aerogels are constituted by ZnO networks implanted with uniform Au NPs. The Au NPs had a size of about 100 nm, and the ZnO nanochains in the networks were about 10 nm in thickness. Further, the proportion of the Au NPs in the final aerogels could be tuned by using different amounts of the Zn precursors. Furthermore, a mechanism based on metal oxidation and oriented connection growth (a self-organization process) has been presented for describing the formation of such Au-ZnO aerogels. In the typical formation, the Zn2+ions first convert into ZnO beads, and then are self-organized to form networks wrapping the colloidal Au NPs under the effect of linker molecules, and this matches well with the observed experimental results. Most importantly, these Au-ZnO aerogels show great structurally enhanced gas sensing properties to gaseous ethanol compared with a pure ZnO film. They have a fast response (about 30 s), a high selectivity, and quantitative sensing to the target gas. This work has provided a simple preparation method for Au-ZnO aerogels, and also shows their great potential in gas sensing applications.
Collapse
Affiliation(s)
- Kang Xu
- Faculty of Mathematics and Physics, Bengbu University, Bengbu, 233030, Anhui, People's Republic of China
| | - Qingqing Wang
- Faculty of Mathematics and Physics, Bengbu University, Bengbu, 233030, Anhui, People's Republic of China
| |
Collapse
|
9
|
Chen JL, Liu MM, Xie SY, Yue LJ, Gong FL, Chai KM, Zhang YH. Cu2O-loaded TiO2 heterojunction composites for enhanced photocatalytic H2 production. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
10
|
Lawrence RL, Olagunju MO, Liu Y, Mahalingam K, Slocik JM, Naik RR, Frenkel AI, Knecht MR. Remote controlled optical manipulation of bimetallic nanoparticle catalysts using peptides. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00189b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Remote optical manipulation of peptide ligands on bimetallic nanoparticle surfaces allows for tunable catalytic reactivity.
Collapse
Affiliation(s)
| | | | - Yang Liu
- Department of Materials Science and Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
| | | | | | - Rajesh R. Naik
- Air Force Research Laboratory
- Wright-Patterson Air Force Base
- USA
| | - Anatoly I. Frenkel
- Department of Materials Science and Chemical Engineering
- Stony Brook University
- Stony Brook
- USA
- Chemistry Division
| | - Marc R. Knecht
- Department of Chemistry
- University of Miami
- Coral Gables
- USA
- Dr. J.T. Macdonald Foundation Biomedical Nanotechnology Institute
| |
Collapse
|