1
|
Kaur R, Nikkel DJ, Aboelnga MM, Wetmore SD. The Impact of DFT Functional, Cluster Model Size, and Implicit Solvation on the Structural Description of Single-Metal-Mediated DNA Phosphodiester Bond Cleavage: The Case Study of APE1. J Phys Chem B 2022; 126:10672-10683. [PMID: 36485014 DOI: 10.1021/acs.jpcb.2c06756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phosphodiester bond hydrolysis in nucleic acids is a ubiquitous reaction that can be facilitated by enzymes called nucleases, which often use metal ions to achieve catalytic function. While a two-metal-mediated pathway has been well established for many enzymes, there is growing support that some enzymes require only one metal for the catalytic step. Using human apurinic/apyrimidinic endonuclease (APE1) as a prototypical example and cluster models, this study clarifies the impact of DFT functional, cluster model size, and implicit solvation on single-metal-mediated phosphodiester bond cleavage and provides insight into how to efficiently model this chemistry. Initially, a model containing 69 atoms built from a high-resolution X-ray crystal structure is used to explore the reaction pathway mapped by a range of DFT functionals and basis sets, which provides support for the use of standard functionals (M06-2X and B3LYP-D3) to study this reaction. Subsequently, systematically increasing the model size to 185 atoms by including additional amino acids and altering residue truncation points highlights that small models containing only a few amino acids or β carbon truncation points introduce model strains and lead to incorrect metal coordination. Indeed, a model that contains all key residues (general base and acid, residues that stabilize the substrate, and amino acids that maintain the metal coordination) is required for an accurate structural depiction of the one-metal-mediated phosphodiester bond hydrolysis by APE1, which results in 185 atoms. The additional inclusion of the broader enzyme environment through continuum solvation models has negligible effects. The insights gained in the present work can be used to direct future computational studies of other one-metal-dependent nucleases to provide a greater understanding of how nature achieves this difficult chemistry.
Collapse
Affiliation(s)
- Rajwinder Kaur
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Dylan J Nikkel
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| | - Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada.,Chemistry Department, Faculty of Science, Damietta University, New Damietta 34517, Egypt
| | - Stacey D Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
2
|
Pfeiffer M, Crean RM, Moreira C, Parracino A, Oberdorfer G, Brecker L, Hammerschmidt F, Kamerlin SCL, Nidetzky B. Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase. ACS Catal 2022; 12:3357-3370. [PMID: 35356705 PMCID: PMC8938923 DOI: 10.1021/acscatal.1c05656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/31/2022] [Indexed: 01/15/2023]
Abstract
![]()
The cooperative interplay
between the functional devices of a preorganized
active site is fundamental to enzyme catalysis. An in-depth understanding
of this phenomenon is central to elucidating the remarkable efficiency
of natural enzymes and provides an essential benchmark for enzyme
design and engineering. Here, we study the functional interconnectedness
of the catalytic nucleophile (His18) in an acid phosphatase by analyzing
the consequences of its replacement with aspartate. We present crystallographic,
biochemical, and computational evidence for a conserved mechanistic
pathway via a phospho-enzyme intermediate on Asp18. Linear free-energy
relationships for phosphoryl transfer from phosphomonoester substrates
to His18/Asp18 provide evidence for the cooperative interplay between
the nucleophilic and general-acid catalytic groups in the wild-type
enzyme, and its substantial loss in the H18D variant. As an isolated
factor of phosphatase efficiency, the advantage of a histidine compared
to an aspartate nucleophile is ∼104-fold. Cooperativity
with the catalytic acid adds ≥102-fold to that advantage.
Empirical valence bond simulations of phosphoryl transfer from glucose
1-phosphate to His and Asp in the enzyme explain the loss of activity
of the Asp18 enzyme through a combination of impaired substrate positioning
in the Michaelis complex, as well as a shift from early to late protonation
of the leaving group in the H18D variant. The evidence presented furthermore
suggests that the cooperative nature of catalysis distinguishes the
enzymatic reaction from the corresponding reaction in solution and
is enabled by the electrostatic preorganization of the active site.
Our results reveal sophisticated discrimination in multifunctional
catalysis of a highly proficient phosphatase active site.
Collapse
Affiliation(s)
- Martin Pfeiffer
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| | - Rory M Crean
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Catia Moreira
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Antonietta Parracino
- Department of Chemistry-BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Gustav Oberdorfer
- Institute of Biochemistry, Graz University of Technology, NAWI Graz, Petersgasse 12/II, 8010 Graz, Austria
| | - Lothar Brecker
- Department of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | - Friedrich Hammerschmidt
- Department of Organic Chemistry, University of Vienna, Währingerstraße 38, 1090 Vienna, Austria
| | | | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.,Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria
| |
Collapse
|