1
|
Tao C, Liu W, Zhang J, Yan J, Jiang Y, Lu Y. Electronic structure engineering of N-doped carbon nanozyme via incorporating Cl and sp 3-hybridized defected carbon for organophosphorus pesticides assay. J Colloid Interface Sci 2025; 678:427-435. [PMID: 39213995 DOI: 10.1016/j.jcis.2024.08.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/11/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Metal-free carbon-based nanozymes often exhibit superior chemical stability and detection reliability compared to their metal-doped counterparts. However, their catalytic activity remains an area ripe for further enhancement. Herein, we successfully prepared a chlorine (Cl)-modified, metal-free, and porous N-doped carbon nanozyme (Clx-pNC) via NaCl molten etching. The incorporation of Cl induced an increase in the intrinsic defects of sp3-hybridized carbon within Clx-pNC and optimized the electronic structure of the N-connected carbon atoms. Remarkably, the peroxidase (POD)-like activity of Clx-pNC was enhanced twelvefold compared to porous N-doped carbon (pNC). Theoretical simulations highlighted that the introduction of Cl not only promoted H2O2 adsorption but also lowered the energy barrier for its decomposition, facilitating the generation of active intermediates and thus boosting POD-like activity. Based on the POD mimic activity of Clx-pNC, we developed a colorimetric platform for OPs detection utilizing a cascade amplification strategy. This work provides insights into the rational design of carbon-based nanozymes and the development of nanozyme-based colorimetric biosensors.
Collapse
Affiliation(s)
- Chenyu Tao
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Wendong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jiqing Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Jinghao Yan
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
2
|
Liu B, Hou J, Wang K, Xu C, Zhang Q, Gu L, Zhou W, Li Q, Wang J, Liu H. Surface Charge Regulation of Graphene by Fluorine and Chlorine Co-Doping for Constructing Ultra-Stable and Large Energy Density Micro-Supercapacitors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402033. [PMID: 39294103 PMCID: PMC11558090 DOI: 10.1002/advs.202402033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/30/2024] [Indexed: 09/20/2024]
Abstract
Settling the structure stacking of graphene (G) nanosheets to maintain the high dispersity has been an intense issue to facilitate their practical application in the microelectronics-related devices. Herein, the co-doping of the highest electronegative fluorine (F) and large atomic radius chlorine (Cl) into G via a one-step electrochemical exfoliation protocol is engineered to actualize the ultralong cycling stability for flexible micro-supercapacitors (MSCs). Density functional theoretical calculations unveiled that the F into G can form the "ionic" C─F bond to increase the repulsive force between nanosheets, and the introduction of Cl can enlarge the layer spacing of G as well as increase active sites by accumulating the charge on pore defects. The co-doping of F and Cl generates the strong synergy to achieve high reversible capacitance and sturdy structure stability for G. The as-constructed aqueous gel-based MSC exhibited the superb cycling stability for 500,000 cycles with no capacitance loss and structure stacking. Furthermore, the ionic liquid gel-based MSC demonstrated a high energy density of 113.9 mW h cm-3 under high voltage of up to 3.5 V. The current work enlightens deep insights into the design and scalable preparation of high-performance co-doped G electrode candidate in the field of flexible microelectronics.
Collapse
Affiliation(s)
- Binbin Liu
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Jiagang Hou
- Kyiv College at Qilu University of TechnologyQilu University of TechnologyShandong Academy of SciencesJinanShandong250353P. R. China
| | - Kai Wang
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
- Institute of Electrical EngineeringChinese Academy of SciencesBeijing100190P. R. China
| | - Caixia Xu
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
| | - Qinghua Zhang
- Institute of PhysicsMatter PhysicsChinese Academy of Sciences/Beijing National Laboratory for CondensedBeijing100190P. R. China
| | - Lin Gu
- Institute of PhysicsMatter PhysicsChinese Academy of Sciences/Beijing National Laboratory for CondensedBeijing100190P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
| | - Qian Li
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
| | - John Wang
- Department of Materials Science and EngineeringNational University of SingaporeSingapore117574Singapore
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)Shandong Provincial Key Laboratory of Preparation and Measurement of Building MaterialsCollaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of ShandongUniversity of JinanJinanShandong250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinanShandong250100P. R. China
| |
Collapse
|
3
|
Sun J, Ge X, Gao Y, Zhang M, Zhao Q, Hou G, Wang X, Yin Y, Ouyang J, Na N. Competitive photooxidation of small colorless organics controlled by oxygen vacancies under visible light. Chem Sci 2024:d4sc04531a. [PMID: 39323529 PMCID: PMC11420858 DOI: 10.1039/d4sc04531a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/06/2024] [Indexed: 09/27/2024] Open
Abstract
Visible-light photooxidation sensitized by surface attachment of small colorless organics on semiconductor photocatalysts has emerged as an economical method for photocatalytic synthesis or degradation. In particular, heteroatom (X = N and Cl)-containing substrates could undergo either C-N coupling or dechlorination degradation via sensitizing TiO2, but the mechanism in conducting the competitive visible-light sensitized photooxidations is still vague. Herein, the visible-light photooxidation of colorless 4-chlorobenzene-1,2-diamine (o-CAN) on TiO2 was revealed, contributing to selective C-N coupling rather than dechlorination. Oxygen vacancies (OVs) were in situ generated on the TiO2 surface, which could be dominant in weakening the Cl-Ti adsorption of o-CAN and regulating the activation of O2 for selective C-N coupling. The C-N coupling product, functionalized as the sensitizer, further promoted the visible-light photooxidation upon N-Ti and Cl-Ti coordination. This process was then confirmed by on-line mass spectrometric analysis, and the intermediates as well as their kinetics were determined. Thereby, theoretical calculations were employed to verify the roles of OVs in competitive photooxidation and lowering the energy barriers as well. Based on the comprehensive characterizations of both the catalysts and intermediates, this work has provided insights into competitive photooxidations under visible light.
Collapse
Affiliation(s)
- Jianghui Sun
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 China
| | - Xiyang Ge
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yixuan Gao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Min Zhang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Qi Zhao
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Xiaoni Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Yiyan Yin
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Department of Chemistry, College of Arts and Sciences, Beijing Normal University Zhuhai 519087 China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
4
|
Biswas S, Zhou J, Chen XL, Chi C, Pan YA, Cui P, Li J, Liu C, Xia XH. Synergistic Al-Al Dual-Atomic Site for Efficient Artificial Nitrogen Fixation. Angew Chem Int Ed Engl 2024; 63:e202405493. [PMID: 38604975 DOI: 10.1002/anie.202405493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024]
Abstract
Synthesis of ammonia by electrochemical nitrogen reduction reaction (NRR) is a promising alternative to the Haber-Bosch process. However, it is commonly obstructed by the high activation energy. Here, we report the design and synthesis of an Al-Al bonded dual atomic catalyst stabilized within an amorphous nitrogen-doped porous carbon matrix (Al2NC) with high NRR performance. The dual atomic Al2-sites act synergistically to catalyze the complex multiple steps of NRR through adsorption and activation, enhancing the proton-coupled electron transfer. This Al2NC catalyst exhibits a high Faradaic efficiency of 16.56±0.3 % with a yield rate of 29.22±1.2 μg h-1 mgcat -1. The dual atomic Al2NC catalyst shows long-term repeatable, and stable NRR performance. This work presents an insight into the identification of synergistic dual atomic catalytic site and mechanistic pathway for the electrochemical conversion of N2 to NH3.
Collapse
Affiliation(s)
- Sudip Biswas
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jingwen Zhou
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xue-Lu Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chen Chi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-An Pan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Peixin Cui
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jian Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chungen Liu
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
5
|
Feng X, Chen G, Cui Z, Qin R, Jiao W, Huang Z, Shang Z, Ma C, Zheng X, Han Y, Huang W. Engineering Electronic Structure of Nitrogen-Carbon Sites by sp 3 -Hybridized Carbon and Incorporating Chlorine to Boost Oxygen Reduction Activity. Angew Chem Int Ed Engl 2024; 63:e202316314. [PMID: 38032121 DOI: 10.1002/anie.202316314] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Indexed: 12/01/2023]
Abstract
Development of efficient and easy-to-prepare low-cost oxygen reaction electrocatalysts is essential for widespread application of rechargeable Zn-air batteries (ZABs). Herein, we mixed NaCl and ZIF-8 by simple physical milling and pyrolysis to obtain a metal-free porous electrocatalyst doped with Cl (mf-pClNC). The mf-pClNC electrocatalyst exhibits a good oxygen reduction reaction (ORR) activity (E1/2 =0.91 V vs. RHE) and high stability in alkaline electrolyte, exceeding most of the reported transition metal carbon-based electrocatalysts and being comparable to commercial Pt/C electrocatalysts. Likewise, the mf-pClNC electrocatalyst also shows state-of-the-art ORR activity and stability in acidic electrolyte. From experimental and theoretical calculations, the better ORR activity is most likely originated from the fact that the introduced Cl promotes the increase of sp3 -hybridized carbon, while the sp3 -hybridized carbon and Cl together modify the electronic structure of the N-adjacent carbons, as the active sites, while NaCl molten-salt etching provides abundant paths for the transport of electrons/protons. Furthermore, the liquid rechargeable ZAB using the mf-pClNC electrocatalyst as the cathode shows a fulfilling performance with a peak power density of 276.88 mW cm-2 . Flexible quasi-solid-state rechargeable ZAB constructed with the mf-pClNC electrocatalyst as the cathode exhibits an exciting performance both at low, high and room temperatures.
Collapse
Affiliation(s)
- Xueting Feng
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guanzhen Chen
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhibo Cui
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rong Qin
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wensheng Jiao
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zeyi Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ziang Shang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Chao Ma
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Yunhu Han
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Institute of Flexible Electronics (IFE), Ningbo Institute, and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
6
|
He ZH, Shi JJ, Wei YY, Yang SY, Wang K, Wang W, Yang Y, Wang H, Wang C, Liu ZT. Boosting electrocatalytic CO2 reduction over Ni/CN catalysts derived from metal-triazolate-framework by doping with chlorine. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
7
|
Covalent S and Cl grafted porous carbon host realized via the one-step pyrolysis method results in boosted Li–O2 battery performances. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
|
9
|
Li X, Jiao Y, Cui Y, Dai C, Ren P, Song C, Ma X. Synergistic Catalysis of the Synthesis of Ammonia with Co-Based Catalysts and Plasma: From Nanoparticles to a Single Atom. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52498-52507. [PMID: 34714629 DOI: 10.1021/acsami.1c12695] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a series of Co nanoparticles (NPs) with different sizes and Co single-atom catalysts (SACs) with different cobalt-nitrogen coordination numbers (Co-N2, Co-N3, and Co-N4) were synthesized and applied to the synthesis of ammonia catalyzed by plasma at low temperatures and atmospheric pressures. Under the same reaction conditions, the yield of nitrogen obtained from the reduction to ammonia over a series of Co NP catalysts varies with the Co particle size. The smaller the size of the Co NPs, the greater the number of exposed active centers, and the catalytic activity is higher. Among the Co SACs, the best catalyst was Co-N2 with two coordinated nitrogen atoms, and the ammonia yield was 181 mg·h-1·gcat-1. The experimental and theoretical calculations were consistent in that a low Co-N coordination number was beneficial to the adsorption and dissociation of N2, thereby enhancing the reduction activity of N2 and promoting the increase of ammonia production.
Collapse
Affiliation(s)
- Xuemei Li
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an 710069, China
| | - Yueyue Jiao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- The University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Company Ltd., Beijing 101400, P. R. China
| | - Yi Cui
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an 710069, China
| | - Chengyi Dai
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an 710069, China
| | - Pengju Ren
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. China
- The University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Company Ltd., Beijing 101400, P. R. China
| | - Chunshan Song
- Department of Chemistry, Faculty of Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong 999077, China
| | - Xiaoxun Ma
- School of Chemical Engineering, Northwest University, Xi'an 710069, China
- International Science & Technology Cooperation Base for Clean Utilization of Hydrocarbon Resources, Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy, Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern Shaanxi, Northwest University, Xi'an 710069, China
| |
Collapse
|
10
|
Lan J, Luo M, Han J, Peng M, Duan H, Tan Y. Nanoporous B 13 C 2 towards Highly Efficient Electrochemical Nitrogen Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102814. [PMID: 34423528 DOI: 10.1002/smll.202102814] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/24/2021] [Indexed: 06/13/2023]
Abstract
The electrochemical nitrogen fixation under mild conditions is a promising alternative to the current nitrogen industry with high energy consumption and greenhouse gas emission. Here, a nanoporous boron carbide (np-B13 C2 ) catalyst is reported for electrochemical nitrogen fixation, which is fabricated by the combination of metallurgical alloy design and chemical etching. The resulting np-B13 C2 exhibits versatile catalytic activities towards N2 reduction reactions (NRR) and N2 oxidation reaction (NOR). A high NH3 yield of 91.28 µg h-1 mgcat.-1 and Faradaic efficiency (FE) of 35.53% at -0.05 V versus the reversible hydrogen electrode are obtained for NRR, as well as long-term stability of up to 70 h, making them among the most active NRR electrocatalysts. This catalyst can also achieve a NO3- yield of 165.8 µg h-1 mgcat.-1 and a FE of 8.4% for NOR. In situ Raman spectroscopy and density functional theory calculations reveal that strong coupling between the BC sites modulates the electronic structures of adjacent B atoms of B13 C2 , which enables the B sites to effectively adsorb and activate chemical inert N2 molecules, resulting in lowered energy required by the potential-determining step. Besides, the introduction of carbon can increase the inherent conductivity and reduce the binding energy of the reactants, thus improving N2 fixation performance.
Collapse
Affiliation(s)
- Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Min Luo
- Department of Physics, Shanghai Polytechnic University, Shanghai, 201209, China
| | - Jiuhui Han
- Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Ming Peng
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan, 410082, China
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
11
|
Han SG, Ma DD, Zhu QL. Atomically Structural Regulations of Carbon-Based Single-Atom Catalysts for Electrochemical CO 2 Reduction. SMALL METHODS 2021; 5:e2100102. [PMID: 34927867 DOI: 10.1002/smtd.202100102] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/04/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) converting CO2 into value-added chemicals and fuels to realize carbon recycling is a solution to the problem of renewable energy shortage and environmental pollution. Among all the catalysts, the carbon-based single-atom catalysts (SACs) with isolated metal atoms immobilized on conductive carbon substrates have shown significant potential toward CO2 RR, which intrigues researchers to explore high-performance SACs for fuel and chemical production by CO2 RR. Especially, regulating the coordination structures of the metal centers and the microenvironments of the substrates in carbon-based SACs has emerged as an effective strategy for the tailoring of their CO2 RR catalytic performance. In this review, the current in situ/operando study techniques and the fundamental parameters for CO2 RR performance are first briefly presented. Furthermore, the recent advances in synthetic strategies which regulate the atomic structures of the carbon-based SACs, including heteroatom coordination, coordination numbers, diatomic metal centers, and the microenvironments of substrates are summarized. In particular, the structure-performance relationship of the SACs toward CO2 RR is highlighted. Finally, the inevitable challenges for SACs are outlined and further research directions toward CO2 RR are presented from the perspectives.
Collapse
Affiliation(s)
- Shu-Guo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, China
| |
Collapse
|
12
|
Lu X, Li H, Wang Y, Huang J, Xu C. Amorphous ReS 2 decorated TiO 2 nanowire arrays for highly-efficient nitrogen reduction. Chem Commun (Camb) 2021; 57:6023-6026. [PMID: 34032241 DOI: 10.1039/d1cc01642c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we constructed amorphous ReS2 nanosheets anchored on TiO2 nanowires by delicately forming Ti-O-Re bonds, which exhibited considerable average ammonia yield and faradaic efficiency as high as 5.3 μg h-1 cm-2cat. and 49.8% at an applied potential of -0.2 V (vs. RHE) in 0.1 M Na2SO4. The high NRR performance could be attributed to the amorphous feature of the ReS2 nanosheets, the rich oxygen vacancies in the TiO2 nanowires and their semiconducting feature, which not only facilitate the sufficient exposure of active sites but also efficiently boost the faradaic efficiency due to the good regulation of surface proton or electron accessibility.
Collapse
Affiliation(s)
- Xiaoying Lu
- State Key Laboratory of Applied Organic Chemistry, Laboratory of Special Function Materials and Structure Design of the Ministry of Education, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | | | | | | |
Collapse
|