1
|
Arnaut P, Bracho Pozsoni N, Nahra F, Tzouras NV, Nolan SP. Synthesis and reactivity of N-heterocyclic carbene (NHC) gold-fluoroalkoxide complexes. Dalton Trans 2024; 53:11952-11958. [PMID: 38958393 DOI: 10.1039/d4dt01402b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
We disclose a novel series of N-heterocyclic carbene (NHC) gold complexes with varied steric and electronic properties, bearing fluorinated alkoxide anions. Early reactivity studies involving these synthons, lead to the synthesis of various complexes of relevance to gold chemistry and catalysis.
Collapse
Affiliation(s)
- Pierre Arnaut
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Nestor Bracho Pozsoni
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Fady Nahra
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
- Materials & Chemistry (MATCH) unit, VITO (Flemish Institute for Technological Research), Boeretang 200, 2400 Mol, Belgium
| | - Nikolaos V Tzouras
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Zhou F, Zhang L, Hu W, Yuan B, Shi JC. A General Catalyst for Buchwald-Hartwig Amination to Prepare Secondary Five-Membered Heteroaryl Amines with Breaking the Base Barrier. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
3
|
Sumida A, Ogawa K, Imoto H, Naka K. Steric and electronic effects of arsa-Buchwald ligands on Suzuki-Miyaura coupling reaction. Dalton Trans 2023; 52:2838-2844. [PMID: 36756968 DOI: 10.1039/d2dt04139a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Suzuki-Miyaura coupling (SMC) reaction is one of the most commonly used cross-coupling reactions. Bulky biaryldialkyl monophosphine ligands, i.e., Buchwald ligands, are beneficial for the SMC reaction. We recently developed a synthetic procedure for arsa-Buchwald ligands, arsenic analogs of Buchwald ligands, and found that these ligands are effective for sterically hindered substrates because of facilitating the transmetalation step owing to the longer arsenic-palladium bond. However, the relationship between the structure and steric/electronic properties of the arsa-Buchwald ligands has not yet been studied in detail. In this study, a series of arsa-Buchwald ligands with various alkyl substituents were synthesized. The cyclopentyl group afforded the highest catalytic activity for the SMC reaction, particularly with sterically hindered substrates. Furthermore, the steric/electronic properties of the arsa-Buchwald ligands were computationally analyzed.
Collapse
Affiliation(s)
- Akifumi Sumida
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kenta Ogawa
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Hiroaki Imoto
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| | - Kensuke Naka
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. .,Materials Innovation Lab, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
4
|
de Gombert A, Darù A, Ahmed TS, Haibach MC, Li-Matsuura R, Yang C, Henry RF, Cook SP, Shekhar S, Blackmond DG. Mechanistic Insight into Cu-Catalyzed C–N Coupling of Hindered Aryl Iodides and Anilines Using a Pyrrol-ol Ligand Enables Development of Mild and Homogeneous Reaction Conditions. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Antoine de Gombert
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Andrea Darù
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Tonia S. Ahmed
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Michael C. Haibach
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Rei Li-Matsuura
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Cassie Yang
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Rodger F. Henry
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Silas P. Cook
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Donna G. Blackmond
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| |
Collapse
|
5
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 166] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
6
|
Liu Y, Voloshkin VA, Scattolin T, Peng M, Van Hecke K, Cazin CSJ, Nolan SP. Versatile and highly efficient trans‐[Pd(NHC)Cl2(DMS/THT)] precatalysts for C‐C and C‐N coupling reactions in green solvents. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yaxu Liu
- Universiteit Gent Chemistry BELGIUM
| | | | | | - Min Peng
- Universiteit Gent Chemistry BELGIUM
| | | | | | | |
Collapse
|
7
|
Primary Phosphines and Phosphine Oxides with a Stereogenic Carbon Center Adjacent to the Phosphorus Atom: Synthesis and Anti-Markovnikov Radical Addition to Alkenes. ORGANICS 2021. [DOI: 10.3390/org2040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Organophosphorus compounds with stereogenic phosphorus and carbon atoms have received increasing attention. In this regards, primary phosphines with a stereogenic carbon atom adjacent to the phosphorus atom were synthesized by the reduction in phosphonates and phosphonoselenoates with a binaphthyl group. Their oxidized products, i.e., phosphine oxides with a stereogenic tetrasubstituted carbon atom, were found to undergo BEt3-mediated radical addition to cyclohexene to give P-stereogenic secondary phosphine oxides with a diastereoselectivity of 91:9. The products were characterized by ordinary analytical methods, such as Fourier transform infrared spectroscopy; 1H, 13C, and 31P NMR spectroscopies; and mass spectroscopy. Computational studies on the phosphorus-centered radical species and the obtained product implied that the thermodynamically stable radical and the adduct may be formed as a major diastereomer. The radical addition to a range of alkenes took place in an anti-Markovnikov fashion to give P-stereogenic secondary phosphine oxides. A variety of functional groups in the alkenes were tolerated under the reaction conditions to afford secondary phosphine oxides in moderate yields. Primary phosphines with an alkenyl group, which were generated in situ, underwent intramolecular cyclization to give five- and six-membered cyclic phosphines in high yields after protection by BH3.
Collapse
|
8
|
Zuo B, Shao H, Qu E, Ma Y, Li W, Huang M, Deng Q. An Alkoxy Modified
N
‐Heterocyclic Carbene‐Palladacycle: Synthesis, Characterization and Application towards Buchwald‐Hartwig and Suzuki‐Miyaura Coupling Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bin Zuo
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Han Shao
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Erdong Qu
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Yunhua Ma
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Wanfang Li
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Mingxian Huang
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| | - Qinyue Deng
- School of Materials and Chemistry University of Shanghai for Science and Technology 334 Jungong Road Shanghai 200093 China
| |
Collapse
|
9
|
A terphenyl phosphine as a highly efficient ligand for palladium-catalysed amination of aryl halides with 1° anilines. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Wong SM, Choy PY, Zhao Q, Yuen OY, Yeung CC, So CM, Kwong FY. Design of Benzimidazolyl Phosphines Bearing Alterable P, O or P, N-Coordination: Synthesis, Characterization, and Insights into Their Reactivity. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Shun Man Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Pui Ying Choy
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Qingyang Zhao
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - On Ying Yuen
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Chung Chiu Yeung
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Chau Ming So
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Fuk Yee Kwong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
11
|
Ouyang JS, Liu S, Pan B, Zhang Y, Liang H, Chen B, He X, Chan WTK, Chan ASC, Sun TY, Wu YD, Qiu L. A Bulky and Electron-Rich N-Heterocyclic Carbene–Palladium Complex (SIPr)Ph2Pd(cin)Cl: Highly Efficient and Versatile for the Buchwald–Hartwig Amination of (Hetero)aryl Chlorides with (Hetero)aryl Amines at Room Temperature. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jia-Sheng Ouyang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Siqi Liu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bendu Pan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Yaqi Zhang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Hao Liang
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Bin Chen
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Xiaobo He
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Wesley Ting Kwok Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Albert S. C. Chan
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| | - Tian-Yu Sun
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Yun-Dong Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Shenzhen Bay Laboratory, Shenzhen, 518132, China
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Liqin Qiu
- School of Chemistry, Guangdong Key Lab of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Number 135 Xingangxi Road, Guangzhou 510275, China
| |
Collapse
|