1
|
Shen ZK, Li K, Li ZJ, Yuan YJ, Guan J, Zou Z, Yu ZT. Mechanistic insights into multimetal synergistic and electronic effects in a hexanuclear iron catalyst with a [Fe 3(μ 3-O)(μ 2-OH)] 2 core for enhanced water oxidation. Dalton Trans 2024; 53:17536-17546. [PMID: 39415721 DOI: 10.1039/d4dt02749c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Multinuclear molecular catalysts mimicking natural photosynthesis have been shown to facilitate water oxidation; however, such catalysts typically operate in organic solutions, require high overpotentials and have unclear catalytic mechanisms. Herein, a bio-inspired hexanuclear iron(III) complex I, Fe6(μ3-O)2(μ2-OH)2(bipyalk)2(OAc)8 (H2bipyalk = 2,2'-([2,2'-bipyridine]-6,6'-diyl)bis(propan-2-ol); OAc = acetate) with desirable water solubility and stability was designed and used for water oxidation. Our results showed that I has high efficiency for water oxidation via the water nucleophilic attack (WNA) pathway with an overpotential of only ca. 290 mV in a phosphate buffer of pH 2. Importantly, key high-oxidation-state metal-oxo intermediates formed during water oxidation were identified by in situ spectroelectrochemistry and oxygen atom transfer reactions. Theoretical calculations further supported the above identification. Reversible proton transfer and charge redistribution during water oxidation enhanced the electron and proton transfer ability and improved the reactivity of I. Here, we have shown the multimetal synergistic and electronic effects of catalysts in water oxidation reactions, which may contribute to the understanding and design of more advanced molecular catalysts.
Collapse
Affiliation(s)
- Zhi-Kai Shen
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| | - Kang Li
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China.
| | - Zi-Jian Li
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| | - Yong-Jun Yuan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Jie Guan
- School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China.
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| | - Zhen-Tao Yu
- National Laboratory of Solid State Microstructures and Jiangsu Provincial Key Laboratory for Nanotechnology, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210093, People's Republic of China.
| |
Collapse
|
2
|
Mangue J, Wehrung I, Pécaut J, Ménage S, Orio M, Torelli S. Bio-inspired copper complexes with Cu 2S cores: (solvent) effects on oxygen reduction reactions. Dalton Trans 2024; 53:15576-15582. [PMID: 39229908 DOI: 10.1039/d4dt01629g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The need for effective alternative energy sources and "green" industrial processes is a more crucial societal topic than ever. In this context, mastering oxygen reduction reactions (ORRs) is a key step to develop fuel cells or to propose alternatives to energy-intensive setups such as the anthraquinone process for hydrogen peroxide production. Achieving this goal using bio-inspired metal complexes based on abundant and non-toxic elements could provide an environmentally friendly option. Given the prevalence of Cu-containing active sites capable of reductive activation of dioxygen in nature, the development of Cu-based catalysts for the ORR thus appears to be a relevant approach. We herein report the preparation, full characterization and (TD)DFT investigation of a new dinuclear mixed-valent copper complex 6 exhibiting a Cu2S core and a bridging triflate anion. Its ORR activity was compared with that of its parent catalyst 1. Two types of solvents were used, acetonitrile and acetone, and various catalyst/Me8Fc (electron source) ratios were tested. Our results highlight a counterintuitive solvent effect for 1 and a drastic drop in the activity for 6 in coordinating acetonitrile together with the modification of its chemical structure.
Collapse
Affiliation(s)
- Jordan Mangue
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | - Iris Wehrung
- Aix Marseille Univ. Centrale Med., ISM2, Marseille, France.
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES, UMR 5819, F-38000 Grenoble, France
| | - Stéphane Ménage
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| | - Maylis Orio
- Aix Marseille Univ. Centrale Med., ISM2, Marseille, France.
| | - Stéphane Torelli
- Univ. Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, 17 rue des Martyrs, 38054 Grenoble Cedex 9, France.
| |
Collapse
|
3
|
Bera M, Kaur S, Keshari K, Moonshiram D, Paria S. Characterization of Reaction Intermediates Involved in the Water Oxidation Reaction of a Molecular Cobalt Complex. Inorg Chem 2022; 61:21035-21046. [PMID: 36517453 DOI: 10.1021/acs.inorgchem.2c03559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Molecular cobalt(III) complexes of bis-amidate-bis-alkoxide ligands, (Me4N)[CoIII(L1)] (1) and (Me4N)[CoIII(L2)] (2), are synthesized and assessed through a range of characterization techniques. Electrocatalytic water oxidation activity of the Co complexes in a 0.1 M phosphate buffer solution revealed a ligand-centered 2e-/1H+ transfer event at 0.99 V followed by catalytic water oxidation (WO) at an onset overpotential of 450 mV. By contrast, 2 reveals a ligand-based oxidation event at 0.9 V and a WO onset overpotential of 430 mV. Constant potential electrolysis study and rinse test experiments confirm the homogeneous nature of the Co complexes during WO. The mechanistic investigation further shows a pH-dependent change in the reaction pathway. On the one hand, below pH 7.5, two consecutive ligand-based oxidation events result in the formation of a CoIII(L2-)(OH) species, which, followed by a proton-coupled electron transfer reaction, generates a CoIV(L2-)(O) species that undergoes water nucleophilic attack to form the O-O bond. On the other hand, at higher pH, two ligand-based oxidation processes merge together and result in the formation of a CoIII(L2-)(OH) complex, which reacts with OH- to yield the O-O bond. The ligand-coordinated reaction intermediates involved in the WO reaction are thoroughly studied through an array of spectroscopic techniques, including UV-vis absorption spectroscopy, electron paramagnetic resonance, and X-ray absorption spectroscopy. A mononuclear CoIII(OH) complex supported by the one-electron oxidized ligand, [CoIII(L3-)(OH)]-, a formal CoIV(OH) complex, has been characterized, and the compound was shown to participate in the hydroxide rebound reaction, which is a functional mimic of Compound II of Cytochrome P450.
Collapse
Affiliation(s)
- Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Kritika Keshari
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| | - Dooshaye Moonshiram
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencia de Materiales de Madrid, Sor Juana Inés de la Cruz, 3, 28049Madrid, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi110016, India
| |
Collapse
|
4
|
Zhang X, Chen QF, Deng J, Xu X, Zhan J, Du HY, Yu Z, Li M, Zhang MT, Shao Y. Identifying Metal-Oxo/Peroxo Intermediates in Catalytic Water Oxidation by In Situ Electrochemical Mass Spectrometry. J Am Chem Soc 2022; 144:17748-17752. [PMID: 36149317 DOI: 10.1021/jacs.2c07026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Molecular catalysis of water oxidation has been intensively investigated, but its mechanism is still not yet fully understood. This study aims at capturing and identifying key short-lived intermediates directly during the water oxidation catalyzed by a cobalt-tetraamido macrocyclic ligand complex using a newly developed an in situ electrochemical mass spectrometry (EC-MS) method. Two key ligand-centered-oxidation intermediates, [(L2-)CoIIIOH] and [(L2-)CoIIIOOH], were directly observed for the first time, and further confirmed by 18O-labeling and collision-induced dissociation studies. These experimental results further confirmed the rationality of the water nucleophilic attack mechanism for the single-site water oxidation catalysis. This work also demonstrated that such an in situ EC-MS method is a promising analytical tool for redox catalytic processes, not only limited to water oxidation.
Collapse
Affiliation(s)
- Xianhao Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Qi-Fa Chen
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jintao Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyu Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jirui Zhan
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao-Yi Du
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhengyou Yu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meixian Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ming-Tian Zhang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuanhua Shao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Akhtar MN, Bikas R, AlDamen MA, Shaghaghi Z, Shahid M, Sokolov A. A new hexanuclear Fe(III) nanocluster: Synthesis, structure, magnetic properties, and efficient activity as a precatalyst in water oxidation. Dalton Trans 2022; 51:12686-12697. [DOI: 10.1039/d2dt01822e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxo-bridged hexanuclear iron cluster formulated, [Fe6III(µ4-O)2(edteH)2(piv)4(SCN)4]∙2MeCN∙2H2O (1) (where, edteH = N,N,N′,N′-tetrakis(2-hydroxyethyl)ethylenediamine; piv = pivalic acid) is synthesized by the reaction of FeCl2∙4H2O with edteH4 and piv in the presence...
Collapse
|
6
|
Guo WX, shen Z, Su YF, Li K, Lin WQ, Chen GH, Guan J, Wang XM, Li Z, Yu Z, Zou Z. Iron-N-Heterocyclic Carbene Complexes as Efficient Electrocatalysts for Water Oxidation in Acidic Conditions. Dalton Trans 2022; 51:12494-12501. [DOI: 10.1039/d2dt01474b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The development of stable, earth-abundant, and high-activity molecular water oxidation catalysts in acidic and neutral conditions remains a great challenge. Here, the use of N-heterocyclic carbene (NHC)-based iron(III) complex 1...
Collapse
|