1
|
Liu J, Dong F, Huang Y, Fu Y, Lu X, Ma R, Zhang F, Wang S, Zhu W. Ce-doped TiO 2 supported RuO 2 as efficient catalysts for the oxidation of HCl to Cl 2. J Environ Sci (China) 2025; 149:234-241. [PMID: 39181638 DOI: 10.1016/j.jes.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/07/2023] [Accepted: 01/05/2024] [Indexed: 08/27/2024]
Abstract
Reducing the cost of RuO2/TiO2 catalysts is still one of the urgent challenges in catalytic HCl oxidation. In the present work, a Ce-doped TiO2 supported RuO2 catalyst with a low Ru loading was developed, showing a high activity in the catalytic oxidation of HCl to Cl2. The results on some extensive characterizations of both Ce-doped TiO2 carriers and their supported RuO2 catalysts show that the doping of Ce into TiO2 can effectively change the lattice parameters of TiO2 to improve the dispersion of the active RuO2 species on the carrier, which facilitates the production of surface Ru species to expose more active sites for boosting the catalytic performance even under some harsh reaction conditions. This work provides some scientific basis and technical support for chlorine recycling.
Collapse
Affiliation(s)
- Jiahui Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China
| | - Fangyuan Dong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China
| | - Yaqi Huang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China
| | - Yanghe Fu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China.
| | - Xinqing Lu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China
| | - Rui Ma
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China
| | - Fumin Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China
| | - Shuhua Wang
- National Engineering Technology Research Center of Fluoro-Materials, Zhejiang Juhua Technology Center Co., Ltd., Quzhou 324004, China
| | - Weidong Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Zou S, Liang Y, Zhang X, Gu Q, Wang L, Sun H, Liao X, Huang J, Masri AR. Manufacturing Single-Atom Alloy Catalysts for Selective CO 2 Hydrogenation via Refinement of Isolated-Alloy-Islands. Angew Chem Int Ed Engl 2025; 64:e202412835. [PMID: 39172117 DOI: 10.1002/anie.202412835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Single-atom alloy (SAA) catalysts exhibit huge potential in heterogeneous catalysis. Manufacturing SAAs requires complex and expensive synthesis methods to precisely control the atomic scale dispersion to form diluted alloys with less active sites and easy sintering of host metal, which is still in the early stages of development. Here, we address these limitations with a straightforward strategy from a brand-new perspective involving the 'islanding effect' for manufacturing SAAs without dilution: homogeneous RuNi alloys were continuously refined to highly dispersed alloy-islands (~1 nm) with completely single-atom sites where the relative metal loading was as high as 40 %. Characterized by advanced atomic-resolution techniques, single Ru atoms were bonded with Ni as SAAs with extraordinary long-term stability and no sintering of the host metal. The SAAs exhibited 100 % CO selectivity, over 55 times reverse water-gas shift (RWGS) rate than the alloys with Ru cluster sites, and over 3-4 times higher than SAAs by the dilution strategy. This study reports a one-step manufacturing strategy for SAA's using the wetness impregnation method with durable high atomic efficiency and holds promise for large-scale industrial applications.
Collapse
Affiliation(s)
- Sibei Zou
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Yuhang Liang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Xingmo Zhang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Qinfen Gu
- Institution: Australian Synchrotron, 800 Blackburn Rd, Clayton, Victoria, 3168, Australia
| | - Lizhuo Wang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Haoyue Sun
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Xiaozhou Liao
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| | - Jun Huang
- Department: School of Chemical and Biomolecular Engineering, Institution: The University of Sydney, J01 The University of Sydney, New South Wales, 2006, Australia
| | - Assaad R Masri
- Department: School of Aerospace, Mechanical and Mechatronic Engineering, Institution: The University of Sydney, J07 The University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
3
|
Zhang B, Yang J, Mu Y, Ji X, Cai Y, Jiang N, Xie S, Qian Q, Liu F, Tan W, Dong L. Fabrication of Highly Dispersed Ru Catalysts on CeO 2 for Efficient C 3H 6 Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19533-19544. [PMID: 39324746 DOI: 10.1021/acs.est.4c07159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Emissions of volatile organic compounds (VOCs) threaten both the environment and human health. To realize the elimination of VOCs, Ru/CeO2 catalysts have been intensively investigated and applied. Although it has been widely acknowledged that the catalytic performance of platinum group metal catalysts was highly determined by their dispersion and coordination environment, the most reactive structures on Ru/CeO2 catalysts for VOCs oxidation are still ambiguous. In this work, starting from Ce-BTC (BTC = 1,3,5-benzenetricarboxylic acid) materials, atomically dispersed Ru catalysts and agglomerated Ru catalysts were successfully created via one-step hydrothermal method (Ru-CeO2-BTC) and conventional incipient wetness impregnation method (Ru/CeO2-BTC), respectively. In a typical model reaction of C3H6 oxidation, atomically dispersed Ruδ+ species with the formation of abundant Ru-O-Ce linkages on Ru-CeO2-BTC were found to perform much better than agglomerated RuOx species on Ru/CeO2-BTC. Further characterizations and mechanism study disclosed that Ru-CeO2-BTC catalyst with atomically dispersed Ru ions and more superior low temperature redox performance compared to Ru/CeO2-BTC could better facilitate the adsorption/activation of C3H6 and the decomposition/desorption of intermediates, thus exhibiting superior C3H6 oxidation activity. This work elucidated the reactive sites on Ru/CeO2 catalysts in the C3H6 oxidation reaction and provided insightful guidance for designing efficient Ru/CeO2 catalysts to eliminate VOCs.
Collapse
Affiliation(s)
- Bifeng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiawei Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yibo Mu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaoyu Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yandi Cai
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Nan Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shaohua Xie
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Fudong Liu
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), Materials Science and Engineering (MSE) Program, University of California, Riverside, California 92521, United States
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Ye R, Wang X, Lu ZH, Zhang R, Feng G. Construction of robust Ni-based catalysts for low-temperature Sabatier reaction. Chem Commun (Camb) 2024; 60:11466-11482. [PMID: 39279413 DOI: 10.1039/d4cc04342a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
CO2 hydrogenation to methane, namely, CO2 methanation or Sabatier reaction, is a significant approach to convert CO2 and H2 to storable and transportable CH4. Low reaction temperature is the key to industrialization and has attracted plenty of research interest. Ni-based catalysts are commonly utilized owing to their favorable properties of excellent activity and economical price. However, it is still challenging to perform the Sabatier reaction under temperatures lower than 300 °C owing to the inertness of CO2. Hence, in this article, we summarize the advances of four important design principles of the Ni-based catalysts for low-temperature Sabatier reaction, namely, optimizing Ni active sites, tuning support properties, considering metal-support interactions, and choosing a suitable preparation method, which provides deep insights for the design of low-temperature CO2 methanation catalysts. Additionally, typical low-temperature CO2 methanation reaction mechanisms with *CO or *HCOO as the main intermediate and perspectives on this topic have been provided. We highlight that the rare-earth oxide-supported Ni-based catalysts with the potential reaction mechanism and corresponding reactor design would be promising for low-temperature Sabatier reaction.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Xuemei Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Zhang-Hui Lu
- Key Laboratory of Energy Catalysis and Conversion of Nanchang, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| | - Gang Feng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
5
|
Deng Q, Yin K, Yang Y, Liu H, Yang C, Zhang Y. Creating CoRu Dual Active Sites Codecorated Stable Porous Ceria Support for Enhanced Li-CO 2 Batteries Cathodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402447. [PMID: 38940363 DOI: 10.1002/smll.202402447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Lithium-carbon dioxide (Li-CO2) battery represents a high-energy density energy storage with excellent real-time CO2 enrichment and conversion, but its practical utilization is hampered by the development of an excellent catalytic cathode. Here, the synergistic catalytic strategy of designing CoRu bimetallic active sites achieves the electrocatalytic conversion of CO2 and the efficient decomposition of the discharge products, which in turn realizes the smooth operation of the Li-CO2 battery. Moreover, obtained support based on metal-organic frameworks precursors facilitates the convenient diffusion and adsorption of CO2, resulting in higher reaction concentration and lower mass transfer resistance. Meanwhile, the optimization of the interfacial electronic structure and the effective transfer of electrons are achieved by virtue of the strong interaction of CoRu at the support interface. As a result, the Li-CO2 cell assembled based on bimetallic CoRu active sites achieved a discharge capacity of 19,111 mA h g-1 and a steady-state discharge voltage of 2.58 V as well as a cycle life of >175 cycles at a rate of 100 mA g-1. Further experiments combined with density-functional theory calculations achieve a deeply view of the connection between cathode and electrochemical performance and pave a way for the subsequent development of advanced Li-CO2 catalytic cathodes.
Collapse
Affiliation(s)
- Qinghua Deng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Kai Yin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yong Yang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Huan Liu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Chenghan Yang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yiwei Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| |
Collapse
|
6
|
Mishra AK, Willoughby J, Estes SL, Kohler KC, Brinkman KS. Impact of morphology and oxygen vacancy content in Ni, Fe co-doped ceria for efficient electrocatalyst based water splitting. NANOSCALE ADVANCES 2024; 6:4672-4682. [PMID: 39263402 PMCID: PMC11385549 DOI: 10.1039/d4na00500g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 07/22/2024] [Indexed: 09/13/2024]
Abstract
Designing a highly efficient, low-cost, sustainable electrocatalyst for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) through water splitting is a current challenge for renewable energy technologies. This work presents a modified sol-gel route to prepare metal-ion(s) doped cerium oxide nanostructures as an efficient electrocatalyst for overall water splitting. Nickle (Ni) and iron (Fe) co-doping impacts the morphology in cerium oxide resulting in 5 nm nanoparticles with a mesoporous-like microstructure. The high level 20 mol% (1 : 1 ratio) of Ni + Fe bimetal-ion(s) doped CeO2 shows excellent HER and OER activities compared to the monodoped Fe/Ni and pristine CeO2. The co-doped catalysts required a low overpotential of 104 mV and 380 mV for HER and OER, respectively, in 1 M KOH, at a current density of 10 mA cm-2. The Tafel slopes of 95 mV dec-1 and 65 mV dec-1 were measured for HER and OER with the same representative samples which demonstrated excellent stability even after continuous operation for 20 hours in the alkaline medium. The unique morphology, enhanced oxygen vacancy (Ov) content and the synergistic effects of dopants in CeO2 play essential roles in enhancing the activities of Ni + Fe doped samples.
Collapse
Affiliation(s)
- Abhaya Kumar Mishra
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| | - Joshua Willoughby
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| | - Shanna L Estes
- Department of Environmental Engineering and Earth Sciences, Clemson University Anderson SC 29625 USA
| | - Keliann Cleary Kohler
- Advanced Materials Research Laboratory (AMRL), Clemson University Anderson SC 29625 USA
| | - Kyle S Brinkman
- Department of Materials Science and Engineering, Clemson University Clemson SC 29634 USA
| |
Collapse
|
7
|
Wang W, Zhang X, Weng S, Peng C. Tuning Catalytic Activity of CO 2 Hydrogenation to C1 Product via Metal Support Interaction Over Metal/Metal Oxide Supported Catalysts. CHEMSUSCHEM 2024; 17:e202400104. [PMID: 38546355 DOI: 10.1002/cssc.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Indexed: 04/28/2024]
Abstract
The metal supported catalysts are emerging catalysts that are receiving a lot of attention in CO2 hydrogenation to C1 products. Numerous experiments have demonstrated that the support (usually an oxide) is crucial for the catalytic performance. The support metal oxides are used to aid in the homogeneous dispersion of metal particles, prevent agglomeration, and control morphology owing to the metal support interaction (MSI). MSI can efficiently optimize the structural and electronic properties of catalysts and tune the conversion of key reaction intermediates involved in CO2 hydrogenation, thereby enhancing the catalytic performance. There is an increasing attention is being paid to the promotion effects in the catalytic CO2 hydrogenation process. However, a systematically understanding about the effects of MSI on CO2 hydrogenation to C1 products catalytic performance has not been fully studied yet due to the diversities in catalysts and reaction conditions. Hence, the characteristics and modes of MSI in CO2 hydrogenation to C1 products are elaborated in detail in our work.
Collapse
Affiliation(s)
- Weiwei Wang
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Xiaoyu Zhang
- Sinochem Quanzhou Petrochemical Co., LTD., Quanzhou, 362100, China
| | - Shujia Weng
- School of Life Sciences and Chemistry, School of MinNan Science, Technology University, Quanzhou, 362332, China
| | - Chong Peng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, Liaoning, China
- Shanghai Research Center of Advanced Applied Technology, Shanghai, 201418, China
| |
Collapse
|
8
|
Zhang M, Ye J, Qu Y, Lu X, Luo K, Dong J, Lu N, Niu Q, Zhang P, Dai S. Highly Stable and Selective Ni/ZrO 2 Nanofiber Catalysts for Efficient CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34936-34946. [PMID: 38922846 DOI: 10.1021/acsami.4c04124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Ni-based oxides are promising catalysts for CO2 methanation. However, Ni-based catalysts also have some unresolved issues and drawbacks in practical applications. The activity and selectivity of Ni-based catalysts in CO2 methanation at low temperatures still need to be improved. Here, Ni/ZrO2 nanofibers with high surface areas (up to 101.2 m2/g) were prepared by electrospinning methods. The Ni/ZrO2-ES (also named as 66Ni/ZrO2) catalyst showed excellent catalytic performance in CO2 methanation (the CO2 conversion = 81% and CH4 selectivity = 99% at 350 °C) and excellent stability for 100 h, which was better than most reported Ni/ZrO2 catalysts. However, the comparison sample Ni/ZrO2-CP prepared by the coprecipitation method had poor catalytic performance (the CO2 conversion = 54% and CH4 selectivity = 90% at 350 °C). Within 100 h, the CO2 conversion decreased to 30% and the CH4 selectivity decreased to 52%. Both EPR and O1S XPS confirmed that Ni/ZrO2 nanofibers can form more reactive oxygen species vacancies, and CO2-TPD confirmed that nanofibers had more CO2 adsorption sites compared with the control sample Ni/ZrO2-CP. In situ DRIFTS analysis showed that bidentate carbonate and monodentate carbonate were key intermediates in CO2 methanation. The catalytic performance of Ni/ZrO2 nanofiber catalysts would be attributed to higher dispersion of Ni species on the surface of nanofibers, high specific surface area (101.2 m2/g), more oxygen vacancies, more CO2 adsorption sites, and the synergistic effect between Ni nanoparticles and ZrO2 nanofibers. This work may inspire the rational design of Ni/ZrO2 nanofiber catalysts with rich oxygen vacancies for low-temperature CO2 methanation.
Collapse
Affiliation(s)
- Mengyuan Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Ye
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Ying Qu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaoyan Lu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Kongliang Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jiali Dong
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Nana Lu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Qiang Niu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- National Enterprise Technology Center, Inner Mongolia Erdos Electric Power and Metallurgy Group Co., Ltd., Ordos 016064, Inner Mongolia, China
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sheng Dai
- Chemical Science Division, Oak Ridge National Lab, Oak Ridge TN37830, United States
| |
Collapse
|
9
|
Liu K, Liao Y, Wang P, Fang X, Zhu J, Liao G, Xu X. Lattice capacity-dependent activity for CO 2 methanation: crafting Ni/CeO 2 catalysts with outstanding performance at low temperatures. NANOSCALE 2024; 16:11096-11108. [PMID: 38770828 DOI: 10.1039/d4nr01409j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In the pursuit of understanding lattice capacity threshold effects of oxide solid solutions for their supported Ni catalysts, a series of Ca2+-doped CeO2 solid solutions with 10 wt% Ni loading (named Ni/CaxCe1-xOy) was prepared using a sol-gel method and used for CO2 methanation. The lattice capacity of Ca2+ in the lattice of CeO2 was firstly determined by the XRD extrapolation method, corresponding to a Ca/(Ca + Ce) molar ratio of 11%. When the amount of Ca2+ in the CaxCe1-xOy supports was close to the CeO2 lattice capacity for Ca2+ incorporation, the obtained Ni/Ca0.1Ce0.9Oy catalyst possessed the optimal intrinsic activity for CO2 methanation. XPS, Raman spectroscopy, EPR and CO2-TPD analyses revealed the largest amount of highly active moderate-strength alkaline centers generated by oxygen vacancies. The catalytic reaction mechanisms were revealed using in situ IR analysis. The results clearly demonstrated that the structure and reactivity of the Ni/CaxCe1-xOy catalyst exhibited the lattice capacity threshold effect. The findings offer a new venue for developing highly efficient oxide-supported Ni catalysts for low-temperature CO2 methanation reaction and enabling efficient catalyst screening.
Collapse
Affiliation(s)
- Kun Liu
- School of Resources and Environment, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi, 330031, China.
| | - Yixin Liao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Peng Wang
- Shandong Chambroad Petrochemicals Co., Ltd, Binzhou, Shandong 256500, China
| | - Xiuzhong Fang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Jia Zhu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330022, China
| | - Guangfu Liao
- College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xianglan Xu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Rare Earths, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
10
|
Zhang K, Xu C, Zhang X, Huang Z, Pian Q, Che K, Cui X, Hu Y, Xuan Y. Structural Heredity in Catalysis: CO 2 Self-Selective CeO 2 Nanocrystals for Efficient Photothermal CO 2 Hydrogenation to Methane. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308823. [PMID: 38102099 DOI: 10.1002/smll.202308823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/03/2023] [Indexed: 12/17/2023]
Abstract
The chemical inertness of CO2 molecules makes their adsorption and activation on a catalyst surface one of the key challenges in recycling CO2 into chemical fuels. However, the traditional template synthesis and chemical modification strategies used to tackle this problem face severe structural collapse and modifier deactivation issues during the often-needed post-processing procedure. Herein, a CO2 self-selective hydrothermal growth strategy is proposed for the synthesis of CeO2 octahedral nanocrystals that participate in strong physicochemical interactions with CO2 molecules. The intense affinity for CO2 molecules persists during successive high-temperature treatments required for Ni deposition. This demonstrates the excellent structural heredity of the CO2 self-selective CeO2 nanocrystals, which leads to an outstanding photothermal CH4 productivity exceeding 9 mmol h-1 mcat -2 and an impressive selectivity of >99%. The excellent performance is correlated with the abundant oxygen vacancies and hydroxyl species on the CeO2 surface, which create many frustrated Lewis-pair active sites, and the strong interaction between Ni and CeO2 that promotes the dissociation of H2 molecules and the spillover of H atoms, thereby greatly benefitting the photothermal CO2 methanation reaction. This self-selective hydrothermal growth strategy represents a new pathway for the development of effective catalysts for targeted chemical reactions.
Collapse
Affiliation(s)
- Kai Zhang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Key Laboratory of Thermal Management and Energy Utilization of Aviation Vehicles, Ministry of Industry and Information Technology, Nanjing, 210016, China
| | - Cuiping Xu
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xingjian Zhang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Zhiyi Huang
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Qixiang Pian
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Kunhong Che
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xiaokun Cui
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yueru Hu
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yimin Xuan
- College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
- Key Laboratory of Thermal Management and Energy Utilization of Aviation Vehicles, Ministry of Industry and Information Technology, Nanjing, 210016, China
| |
Collapse
|
11
|
Parra-Marfil A, Ocampo-Pérez R, Aguilar-Madera CG, Carrasco-Marín F, Pérez-Cadenas AF, Bueno-López A, Bailón-García E. Modeling and experimental analysis of CO 2 methanation reaction using Ni/CeO 2 monolithic catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:32766-32783. [PMID: 38662292 PMCID: PMC11512854 DOI: 10.1007/s11356-024-33327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
In this study, the effect of the cell density of monolithic catalysts was investigated and further mathematically modeled on cordierite supports used in CO2 methanation. Commercial cordierite monoliths with 200, 400, and 500 cpsi cell densities were coated by immersion into an ethanolic suspension of Ni/CeO2 active phase. SEM-EDS analysis confirmed that, owing to the low porosity of cordierite (surface area < 1 m2 g-1), the Ni/CeO2 diffusion into the walls was limited, especially in the case of low and intermediate cell density monoliths; thus, active phase was predominantly loaded onto the channels' external surface. Nevertheless, despite the larger exposed surface area in the monolith with high cell density, which would allow for better distribution and accessibility of Ni/CeO2, its higher macro-pore volume resulted in some introduction of the active phase into the walls. As a result, the catalytic evaluation showed that it was more influenced by increments in volumetric flow rates. The low cell density monolith displayed diffusional control at flow rates below 500 mL min-1. In contrast, intermediate and high cell density monoliths presented this behavior up to 300 mL min-1. These findings suggest that the interaction reactants-catalyst is considerably more affected by a forced non-uniform flow when increasing the injection rate. This condition reduced the transport of reactants and products within the catalyst channels and, in turn, increased the minimum temperature required for the reaction. Moreover, a slight diminution of selectivity to CH4 was observed and ascribed to the possible formation of hot spots that activate the reverse water-gas shift reaction. Finally, a mathematical model based on fundamental momentum and mass transfer equations coupled with the kinetics of CO2 methanation was successfully derived and solved to analyze the fluid dynamics of the monolithic support. The results showed a radial profile with maximum fluid velocity located at the center of the channel. A reactive zone close to the inlet was obtained, and maximum methane production (4.5 mol m-3) throughout the monolith was attained at 350 °C. Then, linear streamlines of the chemical species were developed along the channel.
Collapse
Affiliation(s)
- Adriana Parra-Marfil
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071, Granada, ES, Spain
- Centro de Investigación y Estudios de Posgrado (CIEP), Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí (FCQ-UASLP), 78260, San Luis Potosí, MX, Mexico
| | - Raúl Ocampo-Pérez
- Centro de Investigación y Estudios de Posgrado (CIEP), Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí (FCQ-UASLP), 78260, San Luis Potosí, MX, Mexico
| | - Carlos Gilberto Aguilar-Madera
- Facultad de Ciencias de La Tierra, Universidad Autónoma de Nuevo León (UANL), Carretera a Cerro Prieto Km. 8 Ex Hacienda de Guadalupe, 67700, Linares, MX, Mexico
| | - Francisco Carrasco-Marín
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071, Granada, ES, Spain
| | - Agustín Francisco Pérez-Cadenas
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071, Granada, ES, Spain
| | - Agustín Bueno-López
- Dpto. de Química Inorgánica, Universidad de Alicante (UA), 03080, Alicante, ES, Spain
| | - Esther Bailón-García
- Materiales Polifuncionales Basados en Carbono (UGR-Carbon), Dpto. Química Inorgánica - Unidad de Excelencia Química Aplicada a Biomedicina y Medioambiente, Universidad de Granada (UEQ-UGR), 18071, Granada, ES, Spain.
| |
Collapse
|
12
|
Zhang T, Zheng P, Gao J, Han Z, Gu F, Xu W, Li L, Zhu T, Zhong Z, Xu G, Su F. Single-Atom Ru Alloyed with Ni Nanoparticles Boosts CO 2 Methanation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308193. [PMID: 37953460 DOI: 10.1002/smll.202308193] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/23/2023] [Indexed: 11/14/2023]
Abstract
Designing catalysts to proceed with catalytic reactions along the desired reaction pathways, e.g., CO2 methanation, has received much attention but remains a huge challenge. This work reports one Ru1Ni single-atom alloy (SAA) catalyst (Ru1Ni/SiO2) prepared via a galvanic replacement reaction between RuCl3 and Ni nanoparticles (NPs) derived from the reduction of Ni phyllosilicate (Ni-ph). Ru1Ni/SiO2 achieved much improved selectivity toward hydrogenation of CO2 to CH4 and catalytic activity (Turnover frequency (TOF) value: 40.00 × 10-3 s-1), much higher than those of Ni/SiO2 (TOF value: 4.40 × 10-3 s-1) and most reported Ni-based catalysts (TOF value: 1.03 × 10-3-11.00 × 10-3 s-1). Experimental studies verify that Ru single atoms are anchored onto the Ni NPs surface via the Ru1-Ni coordination accompanied by electron transfer from Ru1 to Ni. Both in situ experiments and theoretical calculations confirm that the interface sites of Ru1Ni-SAA are the intrinsic active sites, which promote the direct dissociation of CO2 and lower the energy barrier for the hydrogenation of CO* intermediate, thereby directing and enhancing the CO2 hydrogenation to CH4.
Collapse
Affiliation(s)
- Tengfei Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Peng Zheng
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Republic of Singapore
| | - Zhennan Han
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Fangna Gu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, P. R. China
| | - Wenqing Xu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Tingyu Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ziyi Zhong
- Department of Chemical Engineering, Guangdong Technion Israel Institute of Technology (GTIIT), and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), 241 Daxue Road, Shantou, 515063, P. R. China
| | - Guangwen Xu
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| | - Fabing Su
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, 110142, P. R. China
| |
Collapse
|
13
|
Ye R, Ma L, Hong X, Reina TR, Luo W, Kang L, Feng G, Zhang R, Fan M, Zhang R, Liu J. Boosting Low-Temperature CO 2 Hydrogenation over Ni-based Catalysts by Tuning Strong Metal-Support Interactions. Angew Chem Int Ed Engl 2024; 63:e202317669. [PMID: 38032335 DOI: 10.1002/anie.202317669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
Rational design of low-cost and efficient transition-metal catalysts for low-temperature CO2 activation is significant and poses great challenges. Herein, a strategy via regulating the local electron density of active sites is developed to boost CO2 methanation that normally requires >350 °C for commercial Ni catalysts. An optimal Ni/ZrO2 catalyst affords an excellent low-temperature performance hitherto, with a CO2 conversion of 84.0 %, CH4 selectivity of 98.6 % even at 230 °C and GHSV of 12,000 mL g-1 h-1 for 106 h, reflecting one of the best CO2 methanation performance to date on Ni-based catalysts. Combined a series of in situ spectroscopic characterization studies reveal that re-constructing monoclinic-ZrO2 supported Ni species with abundant oxygen vacancies can facilitate CO2 activation, owing to the enhanced local electron density of Ni induced by the strong metal-support interactions. These findings might be of great aid for construction of robust catalysts with an enhanced performance for CO2 emission abatement and beyond.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Lixuan Ma
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Xiaoling Hong
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
| | - Tomas Ramirez Reina
- Department of Inorganic Chemistry and Material Sciences Institute of Seville, University of Seville-CSIC, 41092, Seville, Spain
| | - Wenhao Luo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Liqun Kang
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Gang Feng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Rongbin Zhang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China
| | - Maohong Fan
- College of Engineering and Physical Sciences, and School of Energy Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, P. R. China
| | - Jian Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, Liaoning, P. R. China
- DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
14
|
Cui Y, He S, Yang J, Gao R, Hu K, Chen X, Xu L, Deng C, Lin C, Peng S, Zhang C. Research Progress of Non-Noble Metal Catalysts for Carbon Dioxide Methanation. Molecules 2024; 29:374. [PMID: 38257287 PMCID: PMC10821115 DOI: 10.3390/molecules29020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
The extensive utilization of fossil fuels has led to a rapid increase in atmospheric CO2 concentration, resulting in various environmental issues. To reduce reliance on fossil fuels and mitigate CO2 emissions, it is important to explore alternative methods of utilizing CO2 and H2 as raw materials to obtain high-value-added chemicals or fuels. One such method is CO2 methanation, which converts CO2 and H2 into methane (CH4), a valuable fuel and raw material for other chemicals. However, CO2 methanation faces challenges in terms of kinetics and thermodynamics. The reaction rate, CO2 conversion, and CH4 yield need to be improved to make the process more efficient. To overcome these challenges, the development of suitable catalysts is essential. Non-noble metal catalysts have gained significant attention due to their high catalytic activity and relatively low cost. In this paper, the thermodynamics and kinetics of the CO2 methanation reaction are discussed. The focus is primarily on reviewing Ni-based, Co-based, and other commonly used catalysts such as Fe-based. The effects of catalyst supports, preparation methods, and promoters on the catalytic performance of the methanation reaction are highlighted. Additionally, the paper summarizes the impact of reaction conditions such as temperature, pressure, space velocity, and H2/CO2 ratio on the catalyst performance. The mechanism of CO2 methanation is also summarized to provide a comprehensive understanding of the process. The objective of this paper is to deepen the understanding of non-noble metal catalysts in CO2 methanation reactions and provide insights for improving catalyst performance. By addressing the limitations of CO2 methanation and exploring the factors influencing catalyst effectiveness, researchers can develop more efficient and cost-effective catalysts for this reaction.
Collapse
Affiliation(s)
- Yingchao Cui
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shunyu He
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Jun Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Ruxing Gao
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Kehao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Xixi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Lujing Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Chao Deng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| | - Congji Lin
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Shuai Peng
- School of Energy Science and Engineering, Nanjing Tech University, Nanjing 211816, China; (Y.C.); (S.H.); (C.L.); (S.P.)
| | - Chundong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; (J.Y.); (K.H.); (X.C.); (L.X.); (C.D.)
| |
Collapse
|
15
|
Zou X, Meng Y, Liu J, Cao Y, Cui L, Shen Z, Xia Q, Li X, Zhang S, Ge Z, Pan Y, Wang Y. Niobium Modification of CeO 2 Tuning Electron Density of Nickel-Ceria Interfacial Sites for Enhanced CO 2 Methanation. Inorg Chem 2024; 63:881-890. [PMID: 38130105 DOI: 10.1021/acs.inorgchem.3c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
CO2 methanation has attracted considerable attention as a promising strategy for recycling CO2 and generating valuable methane. This study presents a niobium-doped CeO2-supported Ni catalyst (Ni/NbCe), which demonstrates remarkable performance in terms of CO2 conversion and CH4 selectivity, even when operating at a low temperature of 250 °C. Structural analysis reveals the incorporation of Nb species into the CeO2 lattice, resulting in the formation of a Nb-Ce-O solid solution. Compared with the Ni/CeO2 catalyst, this solid solution demonstrates an improved spatial distribution. To comprehend the impact of the Nb-Ce-O solid solution on refining the electronic properties of the Ni-Ce interfacial sites, facilitating H2 activation, and accelerating the hydrogenation of CO2* into HCOO*, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) analysis and density functional theory (DFT) calculations were conducted. These investigations shed light on the mechanism through which the activity of CO2 methanation is enhanced, which differs from the commonly observed CO* pathway triggered by oxygen vacancies (OV). Consequently, this study provides a comprehensive understanding of the intricate interplay between the electronic properties of the catalyst's active sites and the reaction pathway in CO2 methanation over Ni-based catalysts.
Collapse
Affiliation(s)
- Xuhui Zou
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuxiao Meng
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianqiao Liu
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongyong Cao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Lifeng Cui
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhangfeng Shen
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Qineng Xia
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xi Li
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Siqian Zhang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Zhigang Ge
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yunxiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yangang Wang
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| |
Collapse
|
16
|
Fan WK, Tahir M, Alias H. Synergistic Effect of Nickel Nanoparticles Dispersed on MOF-Derived Defective Co 3O 4 In Situ Grown over TiO 2 Nanowires toward UV and Visible Light Driven Photothermal CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54353-54372. [PMID: 37963084 DOI: 10.1021/acsami.3c10022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Catalytic CO2 hydrogenation is an effective approach to producing clean fuels, but this process is expensive, in addition to the low efficiency of catalysts. Thus, photothermal CO2 hydrogenation can effectively utilize solar energy for CH4 production. Metal-organic framework (MOF) derived materials with a controlled structure and morphology are promising to give a high number of active sites and photostability in thermal catalytic reactions. For the first time, a novel heterostructure catalyst was synthesized using a facile approach to in situ grow MOF-derived 0D Co3O4 over 1D TiO2 nanowires (NWs). The original 3D dodecahedral structure of the MOF is engineered into novel 0D Co3O4 nanospheres, which were uniformly embedded over Ni-dispersed 1D TiO2 NWs. In situ prepared 10Ni-7Co3O4@TiO2 NWs-I achieved an excellent photothermal CH4 evolution rate of 8.28 mmol/h at 250 °C under low-intensity visible light, whereas UV light treatment further increased activity by 1.2-fold. UV irradiations promoted high CH4 production while improving the susceptibility of the catalyst to visible light irradiation. The photothermal effect is prominent at lower temperatures, due to the harmonization of both solar and thermal energy. By paralleling with mechanically assembled 10Ni-7Co3O4/TiO2 NWs-M, the catalytic performance of the in situ approach is far superior, attributing to the morphological transformation of 0D Co3O4, which induced intimate interfacial interactions, formation of oxygen vacancies and boosted photo-to-thermal effects. The co-existence of metallic/metal oxide Ni-Co provided beneficial synergies, enhanced photo-to-thermal effects, and improved charge transfer kinetics of the composite. This work uncovers a facile approach to engineering the morphology of MOF derivatives for efficient photothermal CO2 methanation.
Collapse
Affiliation(s)
- Wei Keen Fan
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, United Arab Emirates (UAE) University, P. O. Box 15551, Al Ain, United Arab Emirates
| | - Hajar Alias
- School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310 Johor, Malaysia
| |
Collapse
|
17
|
Li Y, Qin T, Wei Y, Xiong J, Zhang P, Lai K, Chi H, Liu X, Chen L, Yu X, Zhao Z, Li L, Liu J. A single site ruthenium catalyst for robust soot oxidation without platinum or palladium. Nat Commun 2023; 14:7149. [PMID: 37932256 PMCID: PMC10628289 DOI: 10.1038/s41467-023-42935-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The quest for efficient non-Pt/Pd catalysts has proved to be a formidable challenge for auto-exhaust purification. Herein, we present an approach to construct a robust catalyst by embedding single-atom Ru sites onto the surface of CeO2 through a gas bubbling-assisted membrane deposition method. The formed single-atom Ru sites, which occupy surface lattice sites of CeO2, can improve activation efficiency for NO and O2. Remarkably, the Ru1/CeO2 catalyst exhibits exceptional catalytic performance and stability during auto-exhaust carbon particle oxidation (soot), rivaling commercial Pt-based catalysts. The turnover frequency (0.218 h-1) is a nine-fold increase relative to the Ru nanoparticle catalyst. We further show that the strong interfacial charge transfer within the atomically dispersed Ru active site greatly enhances the rate-determining step of NO oxidation, resulting in a substantial reduction of the apparent activation energy during soot oxidation. The single-atom Ru catalyst represents a step toward reducing dependence on Pt/Pd-based catalysts.
Collapse
Affiliation(s)
- Yuanfeng Li
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing, 102249, P. R. China
| | - Tian Qin
- School of Chemistry and Chemical, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing, 102249, P. R. China.
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing, 102249, P. R. China
| | - Peng Zhang
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing, 102249, P. R. China
| | - Kezhen Lai
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing, 102249, P. R. China
| | - Hongjie Chi
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing, 102249, P. R. China
| | - Xi Liu
- School of Chemistry and Chemical, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| | - Liwei Chen
- School of Chemistry and Chemical, In-situ Center for Physical Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Xiaolin Yu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing, 102249, P. R. China.
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing, Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing, 102249, P. R. China
| |
Collapse
|
18
|
Bao S, Liu T, Fu H, Xu Z, Qu X, Zheng S, Zhu D. Ni 12P 5 Confined in Mesoporous SiO 2 with Near-Unity CO Selectivity and Enhanced Catalytic Activity for CO 2 Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45949-45959. [PMID: 37748196 DOI: 10.1021/acsami.3c12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
CO2 hydrogenation via the reverse water gas shift (RWGS) reaction is a promising strategy for CO2 utilization while constructing Ni-based catalysts with high catalytic activity and perfect CO selectivity remains a great challenging. Here, we demonstrate that the product selectivity for CO2 hydrogenation can be significantly tuned from CH4 to CO by phosphating of SiO2-supported Ni catalysts due to the geometric effect. Interestingly, nickel phosphide catalysts with different crystalline phases (Ni12P5 and Ni2P) differ sharply in CO2 conversion, and Ni12P5 is remarkably more active. Furthermore, we developed a facile strategy to confine small Ni12P5 nanoparticles in mesoporous SiO2 channels (Ni12P5@SBA-15). Enhanced activity is exhibited on Ni12P5@SBA-15, ascribed to the highly effective confinement effect. The in situ diffuse reflectance infrared Fourier transform spectroscopy and density functional theory calculations unveil that catalytic CO2 hydrogenation follows a direct CO2 dissociation route with adsorbed CO as the key intermediate. Notably, strong multibonded CO (threefold and bridge-bonded CO) is feasibly formed on the Ni catalyst accounting for CH4 as the dominant product whereas only weak linearly bonded CO exists on nickel phosphide catalysts resulting in almost 100% CO selectivity. The present results indicate that Ni12P5@SBA-15 combining the geometric effect and the confinement effect can achieve near-unity CO selectivity and enhanced activity for CO2 hydrogenation.
Collapse
Affiliation(s)
- Shidong Bao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tao Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dongqiang Zhu
- School of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Peng Y, Xiao X, Song L, Wang N, Chu W. Engineering the Quaternary Hydrotalcite-Derived Ce-Promoted Ni-Based Catalysts for Enhanced Low-Temperature CO 2 Hydrogenation into Methane. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4642. [PMID: 37444955 DOI: 10.3390/ma16134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/15/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
Ce-promoted NiMgAl mixed-oxide (NiCex-C, x = 0, 1, 5, 10) catalysts were prepared from the quaternary hydrotalcite precursors for CO2 hydrogenation to methane. By engineering the Ce contents, NiCe5-C showed its prior catalytic performance in low-temperature CO2 hydrogenation, being about three times higher than that of the Ce-free NiCe0-C catalyst (turnover frequency of NiCe5-C and NiCe0-C: 11.9 h-1 vs. 3.9 h-1 @ 225 °C). With extensive characterization, it was found that Ce dopants promoted the reduction of NiO by adjusting the interaction between Ni and Mg(Ce)AlOx support. The highest ratio of surface Ni0/(Ni2+ + Ni0) was obtained over NiCe5-C. Meanwhile, the surface basicity was tailored with Ce dopants. The strongest medium-strength basicity and highest capacity of CO2 adsorption was achieved on NiCe5-C with 5 wt.% Ce content. The TOF tests indicated a good correlation with medium-strength basicity over the NiCex-C samples. The results showed that the high medium-strength and Ce-promoted surface Ni0 species endows the enhanced low-temperature catalytic performance in CO2 hydrogenation to methane.
Collapse
Affiliation(s)
- Yuxin Peng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Xiao
- College of Carbon Neutrality Future Technology, Sichuan University, Chengdu 610106, China
- National Engineering Research Centre for Flue Gas Desulfurization, Chengdu 610065, China
| | - Lei Song
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ning Wang
- College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Wang H, Li Z, Cui G, Wei M. Synergistic Catalysis at the Ni/ZrO 2-x Interface toward Low-Temperature CO 2 Methanation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19021-19031. [PMID: 37022286 DOI: 10.1021/acsami.3c01544] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The CO2 methanation reaction, which achieves the carbon cycle and gains value-added chemicals, has attracted much attention, but the design and exploitation of highly active catalysts remain a big challenge. Herein, zirconium dioxide-supported Ni catalysts toward low-temperature CO2 methanation are obtained via structural topological transformation of NiZrAl-layered double hydroxide (LDH) precursors, which have the feature of an interfacial structure (Ni-O-Zr3+-Vö) between Ni nanoparticles and ZrO2-x support (0 < x < 1). The optimized catalyst (Ni/ZrO2-x-S2) exhibits exceptional CO2 conversion (∼72%) at a temperature as low as 230 °C with a ∼100% selectivity to CH4, without obvious catalyst deactivation within a 110 h reaction at a high gas hourly space velocity of 30,000 mL·g-1·h-1. Markedly, the space-time yield of CH4 reaches up to ∼0.17 molCH4·gcat-1·h-1, which is superior to previously reported Ni catalysts evaluated under similar reaction conditions. Both in situ/operando investigations (diffuse reflectance infrared Fourier transform spectroscopy and X-ray absorption fine structure) and catalytic evaluations substantiate the interfacial synergistic catalysis at the Ni/ZrO2-x interface: the Zr3+-Vö facilitates the activation adsorption of CO2, while the H2 molecule experiences dissociation at the metallic Ni sites. This work demonstrates that the metal-support interface effect plays a key role in improving the catalytic behavior toward CO2 methanation, which can be extended to other high-performance heterogeneous catalysts toward structure-sensitive systems.
Collapse
Affiliation(s)
- Hui Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zeyang Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Guoqing Cui
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, P. R. China
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
21
|
Pan Y, Han X, Chang X, Zhang H, Zi X, Hao Z, Chen J, Lin Z, Li M, Ma X. Enhanced Low-Temperature CO 2 Methanation over Bimetallic Ni–Ru Catalysts. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yutong Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyu Han
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xiao Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Heng Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaohui Zi
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ziwen Hao
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Jiyi Chen
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Ziji Lin
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Haihe Laboratory of Sustainable Chemical Transformations, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- International Campus of Tianjin University, Joint School of National University of Singapore and Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
22
|
Li Y, Qin T, Ma Y, Xiong J, Zhang P, Lai K, Liu X, Zhao Z, Liu J, Chen L, Wei Y. Revealing Active Edge Sites Induced by Oriented Lattice Bending of Co-CeO2 Nanosheets for Boosting Auto-Exhaust Soot Oxidation. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
23
|
Zeng Z, Guan MJ, Chen H, Xu X, Zou MJ, Zhang MC, Du Y, Li L. Capture-bonding Super Assembly of Nanoscale Dispersed Bimetal on Uniform CeO 2 Nanorod for the Toluene Oxidation. Chem Asian J 2023; 18:e202200947. [PMID: 36377353 DOI: 10.1002/asia.202200947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/26/2022] [Indexed: 11/16/2022]
Abstract
Elimination of VOCs by catalytic oxidation is an important technology. Here, a general synergistic capture-bonding superassembly strategy was proposed to obtain the nanoscale dispersed 5.8% PtFe3 -CeO2 catalyst, which showed a high toluene oxidation activity (T100 =226 °C), excellent catalytic stability (125 h, >99.5%) and a good water resistance ability (70 h, >99.5%). Through the detailed XPS analysis, oxygen cycle experiment, hydrogen reduction experiment, and in-situ DRIFT experiment, we could deduce that PtFe3 -CeO2 had two reaction pathways. The surface adsorbed oxygen resulting from PtFe3 nanoparticles played a dominant role, due to the fast cycling between the surface adsorbed oxygen and oxygen vacancy. In contrast, the lattice oxygen resulting from CeO2 nanorods played an important role due to the relationship between the toluene oxidation activity and the metal-oxygen bonding energy. Furthermore, DFT simulation verified Pt sites were the dominant reaction active sites during this reaction.
Collapse
Affiliation(s)
- Zheng Zeng
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Juan Guan
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Hongyu Chen
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Xiang Xu
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Jianwu Zou
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Ma Chongjie Zhang
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Yankun Du
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| | - Liqing Li
- School of Energy Science and Engineering, Central South University, Changsha, 410083, Hunan, P. R. China
| |
Collapse
|
24
|
Xu H, Zhang WD, Yao Y, Yang J, Liu J, Gu ZG, Yan X. Amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets for highly efficient and stable overall urea splitting. J Colloid Interface Sci 2023; 629:501-510. [PMID: 36174293 DOI: 10.1016/j.jcis.2022.09.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Applications of urea oxidation reaction (UOR) in various sustainable energy-conversion systems are greatly hindered by its slow kinetics. Herein, we demonstrate an in-situ confined synthesis method that produces amorphous chromium oxide confined Ni/NiO nanoparticles-assembled nanosheets (Ni/NiO@CrOx) with fast reaction kinetics towards UOR. The confinement effect of the in-situ generated CrOx overlay contributes to ultrafine Ni/NiO nanoparticles, bringing about rich Ni/NiO and NiO/CrOx interfaces. In-situ Raman and electrochemical characterization show that both CrOx and metallic Ni can promote the formation of the NiOOH species and the electron transfer, leading to high intrinsic activity and fast reaction kinetics. At 1.40 V vs. reversible hydrogen electrode, the Ni/NiO@CrOx delivers a current density of 275 mA cm-2, which is about 2.6 and 6.1 times as large as those of the NiO@CrOx and NiO, respectively. In addition, the protective effect of the CrOx overlay leads to robust working stability towards UOR. Further, the Ni/NiO@CrOx nanosheets are used as bifunctional catalysts for overall urea splitting, and a small electrolysis cell voltage of 1.44 V is needed to reach the benchmark current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Hanwen Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yang Yao
- Department of Health Sciences and Technology, ETH Zürich, Zürich 8092, Switzerland
| | - Jingguo Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiangyong Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiaodong Yan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
25
|
Wang Y, Wang T, Rong Z, Wang Y, Qu J. Role of Hydroxyl on Metal Surface in Hydrogenation Reactions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
26
|
Microwave-assisted ammonia synthesis over Cs-Ru/CeO2 catalyst at ambient pressure: Effects of metal loading and support particle size. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
27
|
Shen X, Wang Z, Wang Q, Tumurbaatar C, Bold T, Liu W, Dai Y, Tang Y, Yang Y. Modified Ni-carbonate interfaces for enhanced CO2 methanation activity: Tuned reaction pathway and reconstructed surface carbonates. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
28
|
Xie Y, Chen J, Wu X, Wen J, Zhao R, Li Z, Tian G, Zhang Q, Ning P, Hao J. Frustrated Lewis Pairs Boosting Low-Temperature CO 2 Methanation Performance over Ni/CeO 2 Nanocatalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yu Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jianjun Chen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xi Wu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Junjie Wen
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ru Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zonglin Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Guocai Tian
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Qiulin Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
- National-Regional Engineering Center for Recovery of Waste Gases from Metallurgical and Chemical Industries, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Jiming Hao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, P. R. China
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
29
|
Zhang G, Fan G, Zheng L, Li F. Ga-Promoted CuCo-Based Catalysts for Efficient CO 2 Hydrogenation to Ethanol: The Key Synergistic Role of Cu-CoGaO x Interfacial Sites. ACS APPLIED MATERIALS & INTERFACES 2022; 14:35569-35580. [PMID: 35894691 DOI: 10.1021/acsami.2c07252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, direct catalytic CO2 hydrogenation to produce ethanol is an effective and feasible way for the resource utilization of CO2. However, constructing non-precious metal catalysts with satisfactory activity and desirable ethanol selectivity remains a huge challenge. Herein, we reported gallium-promoted CuCo-based catalysts derived from single-source Cu-Co-Ga-Al layered double hydroxide precursors. It was manifested that the introduction of Ga species could strengthen strong interactions between Cu and Co oxide species, thereby modifying their electronic structures and thus facilitating the formation of abundant metal-oxide interfaces (i.e., Cu0/Cu+-CoGaOx interfaces). Notably, the as-constructed Cu-CoGa catalyst with a Ga:Co molar ratio of 0.4 exhibited a high ethanol selectivity of 23.8% at a 17.8% conversion, along with a high space-time yield of 1.35 mmolEtOH·gcat-1·h-1 for ethanol under mild reaction conditions (i.e., 220 °C, 3 MPa pressure), which outperformed most non-noble metal-based catalysts previously reported. According to the comprehensive structural characterizations and in situ diffuse reflectance infrared Fourier transform spectra of CO2/CO adsorption and CO2 hydrogenation, it was unambiguously revealed that CHx could be formed at oxygen vacancies of defective CoGaOx species, while CO could be stabilized by Cu+ species, and thus the catalytic synergistic role of Cu0/Cu+-CoGaOx interfacial sites promoted the generation of CHx and CO intermediates to participate in the CHx-CO coupling process and simultaneously inhibited alkylation reactions. The present work points out a promising new strategy for constructing CuCo-based catalysts with favorable interfacial sites for highly efficient CO2 hydrogenation to produce ethanol.
Collapse
Affiliation(s)
- Guangcheng Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Guoli Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing100049, China
| | - Feng Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing100029, China
| |
Collapse
|
30
|
Wang D, Lin L, Zhang R, Mu R, Fu Q. Stabilizing Oxide Nanolayer via Interface Confinement and Surface Hydroxylation. J Phys Chem Lett 2022; 13:6566-6570. [PMID: 35833718 DOI: 10.1021/acs.jpclett.2c01732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface hydroxylation over oxide catalysts often occurs in many catalytic processes involving H2 and H2O, which is considered to play an important role in elementary steps of the reactions. Here, monolayer CoO and CoOHx nanoislands on Pt(111) are used as inverse model catalysts to study the effect of surface hydroxylation on the stability of Co oxide overlayers in O2. Surface science experiments indicate that hydroxyl groups formed on CoO nanoislands produced by deuterium-spillover can enhance oxidation resistance of the Co oxide nanostructures. Theoretical calculation shows that the interfacial adhesion between CoO and Pt is linearly strengthened with the increasing hydroxylation degree of CoO surface. Thus, the interface confinement effect between CoO and Pt can be enhanced by the surface hydroxylation due to the more reduced Co ions and stronger Co-Pt bonding at the CoOHx/Pt interface.
Collapse
Affiliation(s)
- Dongqing Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Le Lin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Rankun Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Rentao Mu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Qiang Fu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| |
Collapse
|
31
|
Li Z, Shi R, Ma Y, Zhao J, Zhang T. Photodriven CO 2 Hydrogenation into Diverse Products: Recent Progress and Perspective. J Phys Chem Lett 2022; 13:5291-5303. [PMID: 35674782 DOI: 10.1021/acs.jpclett.2c01159] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Converting CO2 into value-added chemicals through hydrogenation can optimize the energy structure dominated by fossil energy, effectively alleviate environmental problems, and achieve full utilization of carbon resources. However, the traditional CO2 hydrogenation reactions need to be carried out under high temperature and pressure, causing inevitable secondary pollution to the environment. A fundamental way to solve these problems is to use clean solar energy to convert CO2 into value-added chemicals and to establish an artificial carbon cycle process. In this Perspective, we highlight recent advances in photodriven CO2 conversion, including the reverse water-gas-shift reaction, methanation reaction, methanol synthesis reaction, and C2+ hydrocarbon synthesis reaction. Finally, we also discuss the challenges and future investigation opportunities for modulating the selective conversion of CO2. This Perspective offers guidance for the design of photodriven CO2 conversion or even the entire C1 catalyst chemistry for tuning product selectivity and activity.
Collapse
Affiliation(s)
- Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yining Ma
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
An investigation of the CH3OH and CO selectivity of CO2 hydrogenation over Cu−Ce−Zr catalysts. Front Chem Sci Eng 2022. [DOI: 10.1007/s11705-022-2162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Using XRD extrapolation method to design Ce-Cu-O solid solution catalysts for methanol steam reforming to produce H2: The effect of CuO lattice capacity on the reaction performance. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Research Progress and Reaction Mechanism of CO2 Methanation over Ni-Based Catalysts at Low Temperature: A Review. Catalysts 2022. [DOI: 10.3390/catal12020244] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The combustion of fossil fuels has led to a large amount of carbon dioxide emissions and increased greenhouse effect. Methanation of carbon dioxide can not only mitigate the greenhouse effect, but also utilize the hydrogen generated by renewable electricity such as wind, solar, tidal energy, and others, which could ameliorate the energy crisis to some extent. Highly efficient catalysts and processes are important to make CO2 methanation practical. Although noble metal catalysts exhibit higher catalytic activity and CH4 selectivity at low temperature, their large-scale industrial applications are limited by the high costs. Ni-based catalysts have attracted extensive attention due to their high activity, low cost, and abundance. At the same time, it is of great importance to study the mechanism of CO2 methanation on Ni-based catalysts in designing high-activity and stability catalysts. Herein, the present review focused on the recent progress of CO2 methanation and the key parameters of catalysts including the essential nature of nickel active sites, supports, promoters, and preparation methods, and elucidated the reaction mechanism on Ni-based catalysts. The design and preparation of catalysts with high activity and stability at low temperature as well as the investigation of the reaction mechanism are important areas that deserve further study.
Collapse
|
35
|
Everett Espino OE, Zonetti PC, Celin RR, Costa LT, Alves OC, Spadotto JC, Appel LG, de Avillez RR. The tendency of supports to generate oxygen vacancies and the catalytic performance of Ni/ZrO2 and Ni/Mg(Al)O in CO2 methanation. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01915e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CO2 methanation – TPSR profiles of the Ni/ZrO2, Ni/Mg(Al)O, and Ni/SiO2 catalysts.
Collapse
Affiliation(s)
- O. E. Everett Espino
- Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea, 22451-900, Rio de Janeiro, RJ, Brazil
- Divisão de Catálise, Biocatálise e Processos Químicos, Instituto Nacional de Tecnologia, Av Venezuela 82, sala 518, Praça Mauá, 20081-312, Rio de Janeiro, RJ, Brazil
| | - P. C. Zonetti
- Divisão de Catálise, Biocatálise e Processos Químicos, Instituto Nacional de Tecnologia, Av Venezuela 82, sala 518, Praça Mauá, 20081-312, Rio de Janeiro, RJ, Brazil
| | - R. R. Celin
- Instituto de Química, Universidade Federal Fluminense, Campos de Valonginho s/n, Centro, 24020-141, Niterói, RJ, Brazil
| | - L. T. Costa
- Instituto de Química, Universidade Federal Fluminense, Campos de Valonginho s/n, Centro, 24020-141, Niterói, RJ, Brazil
| | - O. C. Alves
- Instituto de Química, Universidade Federal Fluminense, Campos de Valonginho s/n, Centro, 24020-141, Niterói, RJ, Brazil
| | - J. C. Spadotto
- Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea, 22451-900, Rio de Janeiro, RJ, Brazil
| | - L. G. Appel
- Divisão de Catálise, Biocatálise e Processos Químicos, Instituto Nacional de Tecnologia, Av Venezuela 82, sala 518, Praça Mauá, 20081-312, Rio de Janeiro, RJ, Brazil
| | - R. R. de Avillez
- Departamento de Engenharia Química e de Materiais, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea, 22451-900, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
36
|
Ren J, Zeng F, Mebrahtu C, Palkovits R. Understanding promotional effects of trace oxygen in CO2 methanation over Ni/ZrO2 catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Ji W, Wang N, Li Q, Zhu H, Lin K, Deng J, Chen J, Zhang H, Xing X. Oxygen vacancy distributions and electron localization in a CeO2(100) nanocube. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01179k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxygen vacancy distributions in a 5 nm CeO2 nanocube were determined using the Reverse Monte Carlo method. The oxygen vacancies tend to be located on the surface of the CeO2 nanocube, with far fewer in subsurface and internal regions.
Collapse
Affiliation(s)
- Weihua Ji
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Na Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong 999077, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
38
|
Yu X, Dai L, Peng Y, Deng J, Liu Y, Jing L, Zhang X, Hou Z, Wang J, Dai H. High Selectivity to HCl for the Catalytic Removal of 1,2-Dichloroethane Over RuP/3DOM WO x: Insights into the Effects of P-Doping and H 2O Introduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14906-14916. [PMID: 34633800 DOI: 10.1021/acs.est.1c05586] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ru-based catalysts for catalytic combustion of high-toxicity Cl-containing volatile organic compounds are inclined to produce Cl2 instead of ideal HCl due to the Deacon reaction. We herein reported that the three-dimensionally ordered macroporous (3DOM) WOx-supported RuP nanocatalyst greatly improved HCl selectivity (at 400 °C, increased from 66.0% over Ru/3DOM WOx to 96.4% over RuP/3DOM WOx) and reduced chlorine-containing byproducts for 1,2-dichloroethane (1,2-DCE) oxidation. P-doping enhanced the number of structural hydroxyl groups and Brønsted acid sites. The isotopic 1,2-DCE temperature-programmed desorption experiment in the presence of H218O indicated the generation of a new active oxygen species 16O18O that participated in the reaction. Generally, P-doping and H2O introduction could promote the exchange reaction between Cl and hydroxyl groups, rather than oxygen defects, and then benefit the production of HCl and reduce the generation of other chlorine species or Cl2, via the reaction processes of C2H3Cl → alcohol → aldehyde → carboxylic acids.
Collapse
Affiliation(s)
- Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lingyun Dai
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, P. R. China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Xing Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Zhiquan Hou
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Jia Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Laboratory of Catalysis Chemistry and Nanoscience, Department of Environmental Chemical Engineering, School of Environmental and Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P. R. China
| |
Collapse
|