1
|
Calvillo Solís JJ, Sandoval-Pauker C, Bai D, Yin S, Senftle TP, Villagrán D. Electrochemical Reduction of Perfluorooctanoic Acid (PFOA): An Experimental and Theoretical Approach. J Am Chem Soc 2024; 146:10687-10698. [PMID: 38578843 DOI: 10.1021/jacs.4c00443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an artificial chemical of global concern due to its high environmental persistence and potential human health risk. Electrochemical methods are promising technologies for water treatment because they are efficient, cheap, and scalable. The electrochemical reduction of PFOA is one of the current methodologies. This process leads to defluorination of the carbon chain to hydrogenated products. Here, we describe a mechanistic study of the electrochemical reduction of PFOA in gold electrodes. By using linear sweep voltammetry (LSV), an E0' of -1.80 V vs Ag/AgCl was estimated. Using a scan rate diagnosis, we determined an electron-transfer coefficient (αexp) of 0.37, corresponding to a concerted mechanism. The strong adsorption of PFOA into the gold surface is confirmed by the Langmuir-like isotherm in the absence (KA = 1.89 × 1012 cm3 mol-1) and presence of a negative potential (KA = 3.94 × 107 cm3 mol-1, at -1.40 V vs Ag/AgCl). Based on Marcus-Hush's theory, calculations show a solvent reorganization energy (λ0) of 0.9 eV, suggesting a large electrostatic repulsion between the perfluorinated chain and water. The estimated free energy of the transition state of the electron transfer (ΔG‡ = 2.42 eV) suggests that it is thermodynamically the reaction-limiting step. 19F - 1H NMR, UV-vis, and mass spectrometry studies confirm the displacement of fluorine atoms by hydrogen. Density functional theory (DFT) calculations also support the concerted mechanism for the reductive defluorination of PFOA, in agreement with the experimental values.
Collapse
Affiliation(s)
- Jonathan J Calvillo Solís
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - David Bai
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - Sheng Yin
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - Thomas P Senftle
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, Houston, Texas 770052, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT), El Paso, Texas 79968, United States
| |
Collapse
|
2
|
Shukla G, Yadav D, Singh S, Shankar Singh M. Access to Nitrones from Amines via Electrocatalysis at Room Temperature. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Dhananjay Yadav
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Saurabh Singh
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| | - Maya Shankar Singh
- Department of Chemistry Institute of Science Banaras Hindu University Varanasi 221005 India
| |
Collapse
|
3
|
Shukla G, Saha P, Pali P, Raghuvanshi K, Singh MS. Electrochemical Synthesis of 1,2,3-Thiadiazoles from α-Phenylhydrazones. J Org Chem 2021; 86:18004-18016. [PMID: 34818010 DOI: 10.1021/acs.joc.1c02275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have developed an electrochemical approach for the synthesis of fully substituted 1,2,3-thiadiazoles from α-phenylhydrazones at room temperature, which is very challenging and complementary to the conventional thermal reactions. The key step involves anodic oxidation of phenylhydrazone derivatives at a constant current followed by N,S-heterocyclization. The protocol is remarkable in that it is free of a base and free of an external oxidant and can be converted to a gram scale for postsynthetic drug development with functional thiadiazoles. Most importantly, the electrochemical transformation reflected efficient electro-oxidation with an operationally friendly easy procedure with ample functional molecules. Cyclic voltammograms support the mechanism of this electro-oxidative cyclization process.
Collapse
Affiliation(s)
- Gaurav Shukla
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Priya Saha
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Pragya Pali
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Keshav Raghuvanshi
- Chemical Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
4
|
Gotico P, Leibl W, Halime Z, Aukauloo A. Shaping the Electrocatalytic Performance of Metal Complexes for CO
2
Reduction. ChemElectroChem 2021. [DOI: 10.1002/celc.202100476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Philipp Gotico
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Current Affiliation: Helmholtz-Zentrum Berlin für Materialien und Energie 14109 Berlin Germany
| | - Winfried Leibl
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
| | - Zakaria Halime
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO) 91405 Orsay France
| | - Ally Aukauloo
- Université Paris-Saclay CEA CNRS Institute for Integrative Biology of the Cell (I2BC) 91198 Gif-sur-Yvette France
- Université Paris-Saclay CNRS Institut de chimie moléculaire et des matériaux d'Orsay (ICMMO) 91405 Orsay France
| |
Collapse
|
5
|
Reyes Cruz EA, Nishiori D, Wadsworth BL, Khusnutdinova D, Karcher T, Landrot G, Lassalle‐Kaiser B, Moore GF. Six‐Electron Chemistry of a Binuclear Fe(III) Fused Porphyrin. ChemElectroChem 2021. [DOI: 10.1002/celc.202100550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Edgar A. Reyes Cruz
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| | - Daiki Nishiori
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| | - Brian L. Wadsworth
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| | - Diana Khusnutdinova
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| | - Timothy Karcher
- Eyring Materials Center Arizona State University Tempe AZ 85287–8301 USA
| | - Gautier Landrot
- Synchrotron SOLEIL L'Orme des Merisiers Saint-Aubin BP 48 91192 Gif-sur-Yvette Cedex France
| | | | - Gary F. Moore
- School of Molecular Sciences (SMS) and the Biodesign Institute Center for Applied Structural Discovery (CASD) Arizona State University Tempe AZ 85287–1604 USA
| |
Collapse
|