1
|
Shao H, Zhang Y, Zhao J, Zhang C, Bai F, Hu J. Stable production of hydrogen peroxide over zinc oxide @ zeolitic imidazolate Framework-8 composite catalysts. J Colloid Interface Sci 2024; 676:139-148. [PMID: 39024814 DOI: 10.1016/j.jcis.2024.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/26/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
A promising method of producing hydrogen peroxide (H2O2) is the electrochemical two-electron water oxidation reaction (2e- WOR). In this process, it is important to design electrocatalysts that are both earth abundant and environmentally friendly, as well as offering high stability and production rates. The research of WOR catalysts, such as the extensively used transition metal oxides, is mainly focused on the modification of transition metal elements. Few studies pay attention to the protective heterostructure of metal oxides. Here, we demonstrate for the first time an organometallic skeleton protection strategy to develop highly stable WOR catalysts for H2O2 generation. Unlike the pure ZnO and zeolite imidazole framework-8 (ZIF-8) catalysts, ZnO@ZIF-8 enabled the production of hydrogen peroxide at high voltages. The experimental results demonstrate that the ZnO@ZIF-8 catalyst stably generates H2O2 even under a high voltage of 3.0 V vs. RHE, with a yield reaching 2845.819 μmolmin-1 g-1. ZnO@ZIF-8 shows a relatively low overpotential, with a current density of 10 mA cm-2 and an overpotential of 110 mV. The ZnO@ZIF-8 catalyst's maximal FE value was 4.72 %. Moreover, the ZnO@ZIF-8 catalyst exhibits remarkable durability even after an extended 60-hour stability test. Operando Raman and theoretic calculation analyses reveal that the metal-organic skeleton being encapsulated on the metal oxide surface synergizes with each other, not only expanding the electrochemical surface area, but also adjusting the catalyst metal sites' adsorption capacity. A novel approach to the modification of 2e- WOR metal oxide catalyst is presented in this work.
Collapse
Affiliation(s)
- Haodong Shao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China
| | - Yue Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China
| | - Jianqiang Zhao
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China
| | - Chengxu Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Fengning Bai
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jue Hu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, China; Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
2
|
Kshirsagar SD, Shelake SP, Biswas B, Ramesh K, Gaur R, Abraham BM, Sainath AVS, Pal U. Emerging ZnO Semiconductors for Photocatalytic CO 2 Reduction to Methanol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407318. [PMID: 39367556 DOI: 10.1002/smll.202407318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/09/2024] [Indexed: 10/06/2024]
Abstract
Carbon recycling is poised to emerge as a prominent trend for mitigating severe climate change and meeting the rising demand for energy. Converting carbon dioxide (CO2) into green energy and valuable feedstocks through photocatalytic CO2 reduction (PCCR) offers a promising solution to global warming and energy needs. Among all semiconductors, zinc oxide (ZnO) has garnered considerable interest due to its ecofriendly nature, biocompatibility, abundance, exceptional semiconducting and optical properties, cost-effectiveness, easy synthesis, and durability. This review thoroughly discusses recent advances in mechanistic insights, fundamental principles, experimental parameters, and modulation of ZnO catalysts for direct PCCR to C1 products (methanol). Various ZnO modification techniques are explored, including atomic size regulation, synthesis strategies, morphology manipulation, doping with cocatalysts, defect engineering, incorporation of plasmonic metals, and single atom modulation to boost its photocatalytic performance. Additionally, the review highlights the importance of photoreactor design, reactor types, geometries, operating modes, and phases. Future research endeavors should prioritize the development of cost-effective catalyst immobilization methods for solid-liquid separation and catalyst recycling, while emphasizing the use of abundant and non-toxic materials to ensure environmental sustainability and economic viability. Finally, the review outlines key challenges and proposes novel directions for further enhancing ZnO-based photocatalytic CO2 conversion processes.
Collapse
Affiliation(s)
- Switi Dattatraya Kshirsagar
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Sandip Prabhakar Shelake
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Bapan Biswas
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Kanaparthi Ramesh
- Catalysis Department, Hindustan Petroleum Green R&D Centre, Bangalore, 560067, India
| | - Rashmi Gaur
- Catalysis Department, Hindustan Petroleum Green R&D Centre, Bangalore, 560067, India
| | - B Moses Abraham
- A.J. Drexel Nanomaterials Institute, Department of Materials Science and Engineering, Drexel University, Philadelphia, PA, 19104, USA
| | - Annadanam V Sesha Sainath
- Polymers and Functional Materials and Fluoro-Agrochemicals Department, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ujjwal Pal
- Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
3
|
Ntalouka MP, Adamantia A, Bareka M, Arnaoutoglou E. Comment on “AI in Healthcare: A Revolutionary Ally or an Ethical Dilemma?”. Balkan Med J 2024; 41:319-320. [PMID: 38566499 DOI: 10.4274/balkanmedj.galenos.2024.2024-3-31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Affiliation(s)
- Maria P Ntalouka
- Department of Anaesthesiology, University of Thessaly, Larissa University Hospital, Larissa, Greece
| | - Aretha Adamantia
- Department of Anaesthesiology and Intensive Care, University Hospital of Patras, Rion, Patras, Greece
| | - Metaxia Bareka
- Department of Anaesthesiology, University of Thessaly, Larissa University Hospital, Larissa, Greece
| | - Eleni Arnaoutoglou
- Department of Anaesthesiology, University of Thessaly, Larissa University Hospital, Larissa, Greece
| |
Collapse
|
4
|
Beck A, Newton MA, van de Water LGA, van Bokhoven JA. The Enigma of Methanol Synthesis by Cu/ZnO/Al 2O 3-Based Catalysts. Chem Rev 2024; 124:4543-4678. [PMID: 38564235 DOI: 10.1021/acs.chemrev.3c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The activity and durability of the Cu/ZnO/Al2O3 (CZA) catalyst formulation for methanol synthesis from CO/CO2/H2 feeds far exceed the sum of its individual components. As such, this ternary catalytic system is a prime example of synergy in catalysis, one that has been employed for the large scale commercial production of methanol since its inception in the mid 1960s with precious little alteration to its original formulation. Methanol is a key building block of the chemical industry. It is also an attractive energy storage molecule, which can also be produced from CO2 and H2 alone, making efficient use of sequestered CO2. As such, this somewhat unusual catalyst formulation has an enormous role to play in the modern chemical industry and the world of global economics, to which the correspondingly voluminous and ongoing research, which began in the 1920s, attests. Yet, despite this commercial success, and while research aimed at understanding how this formulation functions has continued throughout the decades, a comprehensive and universally agreed upon understanding of how this material achieves what it does has yet to be realized. After nigh on a century of research into CZA catalysts, the purpose of this Review is to appraise what has been achieved to date, and to show how, and how far, the field has evolved. To do so, this Review evaluates the research regarding this catalyst formulation in a chronological order and critically assesses the validity and novelty of various hypotheses and claims that have been made over the years. Ultimately, the Review attempts to derive a holistic summary of what the current body of literature tells us about the fundamental sources of the synergies at work within the CZA catalyst and, from this, suggest ways in which the field may yet be further advanced.
Collapse
Affiliation(s)
- Arik Beck
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Mark A Newton
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, 182 23 Prague 8, Czech Republic
| | | | - Jeroen A van Bokhoven
- Institute for Chemistry and Bioengineering, ETH Zurich, 8093 Zürich, Switzerland
- Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, 5232 Villigen, Switzerland
| |
Collapse
|
5
|
Zhao R, Zhu Z, Ouyang T, Liu ZQ. Selective CO 2 -to-Syngas Conversion Enabled by Bimetallic Gold/Zinc Sites in Partially Reduced Gold/Zinc Oxide Arrays. Angew Chem Int Ed Engl 2024; 63:e202313597. [PMID: 37853853 DOI: 10.1002/anie.202313597] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
Electrocatalytic CO2 -to-syngas (gaseous mixture of CO and H2 ) is a promising way to curb excessive CO2 emission and the greenhouse gas effect. Herein, we present a bimetallic AuZn@ZnO (AuZn/ZnO) catalyst with high efficiency and durability for the electrocatalytic reduction of CO2 and H2 O, which enables a high Faradaic efficiency of 66.4 % for CO and 26.5 % for H2 and 3 h stability of CO2 -to-syngas at -0.9 V vs. the reversible hydrogen electrode (RHE). The CO/H2 ratios show a wide range from 0.25 to 2.50 over a narrow potential window (-0.7 V to -1.1 V vs. RHE). In situ attenuated total reflection surface-enhanced infrared absorption spectroscopy combined with density functional theory calculations reveals that the bimetallic synergistic effect between Au and Zn sites lowers the activation energy barrier of CO2 molecules and facilitates electronic transfer, further highlighting the potential to control CO/H2 ratios for efficient syngas production using the coexisting Au sites and Zn sites.
Collapse
Affiliation(s)
- Rui Zhao
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ziyin Zhu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Ting Ouyang
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| | - Zhao-Qing Liu
- School of Chemistry and Chemical Engineering/Institute of Clean Energy and Materials/Guangzhou Key Laboratory for Clean Energy and Materials/Huangpu Hydrogen Innovation Center/Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou Higher Education Mega Center, No. 230 Wai Huan Xi Road, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Okayama K, Nakayama A, Murayama T, Sakaguchi N, Hong F, Qiao B, Wang J, Shimada T, Takagi S, Ishida T. Decoration of Gold and Platinum Nanoparticle Catalysts by 1 nm Thick Metal Oxide Overlayer and Its Effect on the CO Oxidation Activity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4570-4580. [PMID: 38239175 DOI: 10.1021/acsami.3c14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Exfoliated M-Al layered double hydroxide (M-Al LDH; M = Mg, Co, Ni, and Zn) nanosheets were adsorbed on Au/SiO2 and calcined to transform LDH into mixed metal oxides (MMOs) and yield Au/SiO2 coated with a thin MMO overlayer. These catalysts showed a higher catalytic activity than pristine Au/SiO2. In particular, the 50% CO conversion temperature decreased by more than 250 °C for Co-Al MMO-coated Au/SiO2. In contrast, the deposition of CoAlOx on Au/SiO2 by impregnation or the deposition of Au on Co-Al MMO-coated SiO2 resulted in a worse catalytic activity. Moreover, the presence of a thick MMO overlayer decreased the catalytic activity, suggesting that the control of the overlayer thickness to less than 1 nm is a requisite for obtaining a high catalytic activity. Moreover, the thin Co-Al MMO overlayer on Au/SiO2 possessed abundant oxygen vacancies, which would play an important role in O2 activation, resulting in a highly active interface between Au and the defect-rich MMO on the Au NP surface. Finally, this can be applied to Pt/SiO2, and the obtained Co-Al MMO-coated Pt/SiO2 also exhibited a much improved catalytic activity for CO oxidation.
Collapse
Affiliation(s)
- Kaho Okayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Akihiro Nakayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Yantai Key Laboratory of Gold Catalysis and Engineering, Shandong Applied Research Center of Gold Nanotechnology (AU-SDARC), School of Chemistry & Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Norihito Sakaguchi
- Laboratory of Integrated Function Materials, Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Feng Hong
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Junhu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Tetsuya Shimada
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shinsuke Takagi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
7
|
Mohite SV, Kim S, Bae J, J Jeong H, Kim TW, Choi J, Kim Y. Defects Healing of the ZnO Surface by Filling with Au Atom Catalysts for Efficient Photocatalytic H 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304393. [PMID: 37712098 DOI: 10.1002/smll.202304393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Healed defects on photocatalysts surface and their interaction with plasmonic nanoparticles (NPs) have attracted attention in H2 production process. In this study, surface oxygen vacancy (Vo ) defects are created on ZnO (Vo -ZnO) NPs by directly pyrolyzing zeolitic imidazolate framework. The surface defects on Vo -ZnO provide active sites for the diffusion of single Au atoms and as nucleation sites for the formation of Au NPs by the in situ photodeposition process. The electronically healed surface defects by single Au atoms help in the formation of a heterojunction between the ZnO and plasmonic Au NPs. The formed Au/Vo -Au:ZnO-4 heterojunction prolongs photoelectron lifetimes and increases donor charge density. Therefore, the optimized photocatalysts of Au/Vo -Au:ZnO-4 has 21.28 times higher H2 production rate than the pristine Vo -ZnO under UV-visible light in 0.35 m Na2 SO4 and 0.25 m Na2 SO3 . However in 0.35 m Na2 S and 0.25 m Na2 SO3 , the H2 production rate is 25.84 mmole h-1 g-1 . Furthermore, Au/Vo -Au:ZnO-4 shows visible light activity by generating hot carries via induced surface plasmonic effects. It has 48.58 times higher H2 production rate than pristine Vo -ZnO. Therefore, this study infers new insight for defect healing mediated preparation of Au/Vo -Au:ZnO heterojunction for efficient photocatalytic H2 production.
Collapse
Affiliation(s)
- Santosh V Mohite
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Shinik Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiyoung Bae
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Hee J Jeong
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Tae Woong Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Yeonho Kim
- Department of Applied Chemistry, Konkuk University, Chungju, 27478, Republic of Korea
| |
Collapse
|
8
|
Liu W, Liu H, Cui R, Cao Z, Dong Z, Luo L. Deciphering the Metal-Support Interaction of Au/ZnO Catalyst Induced by H 2 and O 2 Pretreatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305122. [PMID: 37718443 DOI: 10.1002/smll.202305122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Indexed: 09/19/2023]
Abstract
Metal-support interaction (MSI) provides great possibilities to tune the activity, selectivity, and stability of heterogeneous catalysts. Herein, the Au/ZnO catalyst is prepared by commercial ZnO and chloroauric acid, and the structure evolution of the catalyst pretreated by H2 and O2 gas at varied temperature is investigated to provide mechanistic insights of MSI. It is found that the H2 treatment at 300 °C and above can induce the formation of both the ZnOx overlayer and bulk Au-Zn alloy. In contrast, the O2 treatment can form the ZnOx overlayer at 500 °C and above without the formation of Au-Zn alloy. It is also revealed that the ZnOx overlayer is dynamically stable (permeable), which can provide access for reactant molecules during the reaction process. And, the Au-Zn alloy can recover to Au and ZnO under the CO oxidation reaction condition, which can be deemed as a re-activation process that endows H2 -treated samples with the superior activity and stability.
Collapse
Affiliation(s)
- Wei Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Hongpeng Liu
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Ronghua Cui
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zhongliang Cao
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Zejian Dong
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
| | - Langli Luo
- Institute of Molecular Plus, Tianjin University, 92 Weijin Road, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
9
|
Mosrati J, Ishida T, Mac H, Al-Yusufi M, Honma T, Parliniska-Wojtan M, Kobayashi Y, Klyushin A, Murayama T, Abdel-Mageed AM. Low-Temperature Hydrogenation of CO 2 to Methanol in Water on ZnO-Supported CuAu Nanoalloys. Angew Chem Int Ed Engl 2023:e202311340. [PMID: 37856669 DOI: 10.1002/anie.202311340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Optimizing processes and materials for the valorization of CO2 to hydrogen carriers or platform chemicals is a key step for mitigating global warming and for the sustainable use of renewables. We report here on the hydrogenation of CO2 in water on ZnO-supported CuAu nanoalloys, based on ≤7 mol % Au. Cux Auy /ZnO catalysts were characterized using 197 Au Mössbauer, in situ X-ray absorption (Au LIII - and Cu K-edges), and ambient pressure X-ray photoelectron (APXP) spectroscopic methods together with X-ray diffraction and high-resolution electron microscopy. At 200 °C, the conversion of CO2 showed a significant increase by 34 times (from 0.1 to 3.4 %) upon increasing Cu93 Au7 loading from 1 to 10 wt %, while maintaining methanol selectivity at 100 %. Limited CO selectivity (4-6 %) was observed upon increasing temperature up to 240 °C but associated with a ≈3-fold increase in CO2 conversion. Based on APXPS during CO2 hydrogenation in an H2 O-rich mixture, Cu segregates preferentially to the surface in a mainly metallic state, while slightly charged Au submerges deeper into the subsurface region. These results and detailed structural analyses are topics of the present contribution.
Collapse
Affiliation(s)
- Jawaher Mosrati
- Leibniz Institute for Catalysis (LIKAT Rostock), 18059, Rostock, Germany
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Hung Mac
- Leibniz Institute for Catalysis (LIKAT Rostock), 18059, Rostock, Germany
| | - Mohammed Al-Yusufi
- Leibniz Institute for Catalysis (LIKAT Rostock), 18059, Rostock, Germany
| | - Tetsuo Honma
- Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, 679-5198, Japan
| | | | - Yasuhiro Kobayashi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka, 590-0494, Japan
| | | | - Toru Murayama
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
- Research Center for Hydrogen Energy-based Society, Tokyo Metropolitan University, Tokyo, 192-0397, Japan
| | - Ali M Abdel-Mageed
- Leibniz Institute for Catalysis (LIKAT Rostock), 18059, Rostock, Germany
| |
Collapse
|
10
|
Chen L, Allec SI, Nguyen MT, Kovarik L, Hoffman AS, Hong J, Meira D, Shi H, Bare SR, Glezakou VA, Rousseau R, Szanyi J. Dynamic Evolution of Palladium Single Atoms on Anatase Titania Support Determines the Reverse Water-Gas Shift Activity. J Am Chem Soc 2023; 145:10847-10860. [PMID: 37145876 DOI: 10.1021/jacs.3c02326] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Research interest in single-atom catalysts (SACs) has been continuously increasing. However, the lack of understanding of the dynamic behaviors of SACs during applications hinders catalyst development and mechanistic understanding. Herein, we report on the evolution of active sites over Pd/TiO2-anatase SAC (Pd1/TiO2) in the reverse water-gas shift (rWGS) reaction. Combining kinetics, in situ characterization, and theory, we show that at T ≥ 350 °C, the reduction of TiO2 by H2 alters the coordination environment of Pd, creating Pd sites with partially cleaved Pd-O interfacial bonds and a unique electronic structure that exhibit high intrinsic rWGS activity through the carboxyl pathway. The activation by H2 is accompanied by the partial sintering of single Pd atoms (Pd1) into disordered, flat, ∼1 nm diameter clusters (Pdn). The highly active Pd sites in the new coordination environment under H2 are eliminated by oxidation, which, when performed at a high temperature, also redisperses Pdn and facilitates the reduction of TiO2. In contrast, Pd1 sinters into crystalline, ∼5 nm particles (PdNP) during CO treatment, deactivating Pd1/TiO2. During the rWGS reaction, the two Pd evolution pathways coexist. The activation by H2 dominates, leading to the increasing rate with time-on-stream, and steady-state Pd active sites similar to the ones formed under H2. This work demonstrates how the coordination environment and nuclearity of metal sites on a SAC evolve during catalysis and pretreatments and how their activity is modulated by these behaviors. These insights on SAC dynamics and the structure-function relationship are valuable to mechanistic understanding and catalyst design.
Collapse
Affiliation(s)
- Linxiao Chen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sarah I Allec
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Manh-Thuong Nguyen
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jiyun Hong
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Debora Meira
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Honghong Shi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Simon R Bare
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | | | - Roger Rousseau
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - János Szanyi
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
11
|
Carbon Dioxide Conversion on Supported Metal Nanoparticles: A Brief Review. Catalysts 2023. [DOI: 10.3390/catal13020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The increasing concentration of anthropogenic CO2 in the air is one of the main causes of global warming. The Paris Agreement at COP 21 aims to reach the global peak of greenhouse gas emissions in the second half of this century, with CO2 conversion towards valuable added compounds being one of the main strategies, especially in the field of heterogeneous catalysis. In the current search for new catalysts, the deposition of metallic nanoparticles (NPs) supported on metal oxides and metal carbide surfaces paves the way to new catalytic solutions. This review provides a comprehensive description and analysis of the relevant literature on the utilization of metal-supported NPs as catalysts for CO2 conversion to useful chemicals and propose that the next catalysts generation can be led by single-metal-atom deposition, since in general, small metal particles enhance the catalytic activity. Among the range of potential indicators of catalytic activity and selectivity, the relevance of NPs’ size, the strong metal–support interactions, and the formation of vacancies on the support are exhaustively discussed from experimental and computational perspective.
Collapse
|
12
|
Pu T, Zhang W, Zhu M. Engineering Heterogeneous Catalysis with Strong Metal-Support Interactions: Characterization, Theory and Manipulation. Angew Chem Int Ed Engl 2023; 62:e202212278. [PMID: 36287199 DOI: 10.1002/anie.202212278] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Strong metal-support interactions (SMSI) represent a classic yet fast-growing area in catalysis research. The SMSI phenomenon results in the encapsulation and stabilization of metal nanoparticles (NPs) with the support material that significantly impacts the catalytic performance through regulation of the interfacial interactions. Engineering SMSI provides a promising approach to steer catalytic performance in various chemical processes, which serves as an effective tool to tackle energy and environmental challenges. Our Minireview covers characterization, theory, catalytic activity, dependence on the catalytic structure and inducing environment of SMSI phenomena. By providing an overview and outlook on the cutting-edge techniques in this multidisciplinary research field, we not only want to provide insights into the further exploitation of SMSI in catalysis, but we also hope to inspire rational designs and characterization in the broad field of material science and physical chemistry.
Collapse
Affiliation(s)
- Tiancheng Pu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Wenhao Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
13
|
Cao Y, Peng Y, Cheng D, Chen L, Wang M, Shang C, Zheng L, Ma D, Liu ZP, He L. Room-Temperature CO Oxidative Coupling for Oxamide Production over Interfacial Au/ZnO Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yanwei Cao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yao Peng
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Danyang Cheng
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Lin Chen
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Maolin Wang
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Cheng Shang
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ding Ma
- College of Chemistry and Molecular Engineering and College of Engineering, Peking University, Beijing 100871, China
| | - Zhi-Pan Liu
- Collaborative Innovation Center of Chemistry for Energy Material, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Key Laboratory of Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Lin He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
14
|
Influence of oxygen vacancies of CeO2 on reverse water gas shift reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Li M, Groß A, Behm RJ. Effect of O-Vacancy Concentration and Proximity on Electronic Metal–Support Interactions: Ru/ZrO 2 Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mengru Li
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - R. Jürgen Behm
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| |
Collapse
|
16
|
Chang X, Han X, Pan Y, Hao Z, Chen J, Li M, Lv J, Ma X. Insight into the Role of Cu–ZrO 2 Interaction in Methanol Synthesis from CO 2 Hydrogenation. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Chang
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Han
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Yutong Pan
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
| | - Ziwen Hao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Jiyi Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
| | - Maoshuai Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Jing Lv
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| | - Xinbin Ma
- Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, Fujian, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|
17
|
Evaluation of Au/ZrO2 Catalysts Prepared via Postsynthesis Methods in CO2 Hydrogenation to Methanol. Catalysts 2022. [DOI: 10.3390/catal12020218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Au nanoparticles supported on ZrO2 enhance its surface acidic/basic properties to produce a high yield of methanol via the hydrogenation of CO2. Amorphous ZrO2-supported 0.5–1 wt.% Au catalysts were synthesized by two methods, namely deposition precipitation (DP) and impregnation (IMP), characterized by a variety of techniques, and evaluated in the process of CO2 hydrogenation to methanol. The DP-method catalysts were highly advantageous over the IMP-method catalyst. The DP method delivered samples with a large surface area, along with the control of the Au particle size. The strength and number of acidic and basic sites was enhanced on the catalyst surface. These surface changes attributed to the DP method greatly improved the catalytic activity when compared to the IMP method. The variations in the surface sites due to different preparation methods exhibited a huge impact on the formation of important intermediates (formate, dioxymethylene and methoxy) and their rapid hydrogenation to methanol via the formate route, as revealed by means of in situ DRIFTS (diffuse reflectance infrared Fourier transform spectroscopy) analysis. Finally, the rate of formation of methanol was enhanced by the increased synergy between the metal and the support.
Collapse
|
18
|
Banivaheb S, Pitter S, Delgado KH, Rubin M, Sauer J, Dittmeyer R. Recent Progress in Direct DME Synthesis and Potential of Bifunctional Catalysts. CHEM-ING-TECH 2022. [DOI: 10.1002/cite.202100167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Soudeh Banivaheb
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Stephan Pitter
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Karla Herrera Delgado
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Michael Rubin
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Jörg Sauer
- Karlsruhe Institute of Technology Institute of Catalysis Research and Technology (IKFT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| | - Roland Dittmeyer
- Karlsruhe Institute of Technology Institute for Micro Process Engineering (IMVT) Hermann-von-Helmholtz-Platz 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
19
|
Evaluation of novel ZnO–Ag cathode for CO2 electroreduction in solid oxide electrolyser. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-021-05103-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractCO2 and steam/CO2 electroreduction to CO and methane in solid oxide electrolytic cells (SOEC) has gained major attention in the past few years. This work evaluates, for the very first time, the performance of two different ZnO–Ag cathodes: one where ZnO nanopowder was mixed with Ag powder for preparing the cathode ink (ZnOmix–Ag cathode) and the other one where Ag cathode was infiltrated with a zinc nitrate solution (ZnOinf –Ag cathode). ZnOmix–Ag cathode had a better distribution of ZnO particles throughout the cathode, resulting in almost double CO generation while electrolysing both dry CO2 and H2/CO2 (4:1 v/v). A maximum overall CO2 conversion of 48% (in H2/CO2) at 1.7 V and 700 °C clearly indicated that as low as 5 wt% zinc loading is capable of CO2 electroreduction. It was further revealed that for ZnOinf –Ag cathode, most of CO generation took place through RWGS reaction, but for ZnOmix–Ag cathode, it was the synergistic effect of both RWGS reaction and CO2 electrolysis. Although ZnOinf –Ag cathode produced trace amount of methane at higher voltages, with ZnOmix–Ag cathode, there was absolutely no methane. This seems to be due to strong electronic interaction between Zn and Ag that might have suppressed the catalytic activity of the cathode towards methanation.
Collapse
|
20
|
Abdel-Mageed AM, Wiese K, Hauble A, Bansmann J, Rabeah J, Parlinska-Wojtan M, Brückner A, Behm RJ. Steering the selectivity in CO2 reduction on highly active Ru/TiO2 catalysts: Support particle size effects. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|