1
|
Yu Z, Kong W, Liang W, Guo Y, Cui J, Hu Y, Sun Z, Elangovan S, Xu F. Heterogeneously Catalyzed Reductive Depolymerization of Lignin to Value-Added Chemicals. CHEMSUSCHEM 2025; 18:e202401399. [PMID: 39193807 DOI: 10.1002/cssc.202401399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Lignin is an abundant renewable source of aromatics, but its complex heterogeneous structure poses challenges for its depolymerization and valorization. Heterogeneously catalyzed reductive depolymerization (HCRD) has emerged as a promising approach, utilizing heterogeneous catalysts to facilitate selective bond cleavage in lignin and hydrogen transfer to stabilize the products under mild conditions. This review provides a comprehensive understanding of the hydrogen transfer mechanisms in HCRD, involving different hydrogen sources, including molecular hydrogen, alcohols, formic acid, etc., and the native hydrogen donor groups in lignin. The interaction between hydrogen sources and catalyst design is explored, emphasizing how catalyst characteristics must align with specific hydrogen transfer pathways to optimize efficiency and selectivity. Precious metal-based and non-precious metal-based catalysts are examined, highlighting advances that enhance hydrogen activation and transfer. Comparative analyses of hydrogen sources reveal distinct advantages and limitations. The significance of HCRD in lignin valorization and the development of integrated biorefineries is underscored, emphasizing its potential to contribute to a sustainable bioeconomy through improved process integration and economic viability.
Collapse
Affiliation(s)
- Zhaozhuo Yu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenzhuo Kong
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wen Liang
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yaping Guo
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiahao Cui
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Yang Hu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Zhuohua Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, No. 35 Tsinghua East Road Haidian District, Beijing, 100083, P. R. China
| | - Saravanakumar Elangovan
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, 221005, India
| | - Fuqing Xu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co.,Ltd and Xi'an Jiaotong University, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| |
Collapse
|
2
|
Durin G, Berthet JC, Thuéry P, Nicolas E, Cantat T. Metal-Free Catalytic Hydrogenolysis of Chlorosilanes into Hydrosilanes with "Inverse" Frustrated Lewis Pairs. Chemistry 2023; 29:e202302155. [PMID: 37665089 DOI: 10.1002/chem.202302155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023]
Abstract
The challenging metal-free catalytic hydrogenolysis of silyl chlorides to hydrosilanes is unlocked by using an inverse frustrated Lewis pair (FLP), combining a mild Lewis acid (Cy2 BCl) and a strong phosphazene base (BTPP) in mild conditions (10 bar of H2 , r. t.). In the presence of a stoichiometric amount of the base, the hydrosilanes R3 SiH (R=Me, Et, Ph) are generated in moderate to high yields (up to 95 %) from their chlorinated counterparts. A selective formation of the valuable difunctional monohydride Me2 SiHCl is also obtained from Me2 SiCl2 . A mechanism is proposed based on stoichiometric experiments and DFT calculations; it highlights the critical role of borohydride species generated by the heterolytic splitting of H2 .
Collapse
Affiliation(s)
- Gabriel Durin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | | | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Emmanuel Nicolas
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Sturm AG, Karaca US, Heinz M, Felder T, Lewis KM, Auner N, Holthausen MC. Siemens Reloaded: Chloride-Assisted Selective Hydrodechlorination of SiCl 4 to HSiCl 3. CHEMSUSCHEM 2023; 16:e202201953. [PMID: 36479804 DOI: 10.1002/cssc.202201953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Trichlorosilane is the key intermediate for the large-scale production of polycrystalline silicon in the Siemens and Union Carbide processes. Both processes, however, are highly inefficient, and over two thirds of the trichlorosilane employed is converted to unwanted silicon tetrachloride accumulating in millions of tons per year on a global scale. In this combined experimental and theoretical study we report an energetically and environmentally benign synthetic protocol for the highly selective conversion of SiCl4 to HSiCl3 using organohydridosilanes as recyclable hydrogen transfer reagents in combination with onium chlorides as efficient catalysts. We put the same protocol to further use demonstrating the quantitative conversion of higher oligosilane residues, which form as another unwanted and potentially hazardous byproduct of Siemens processes, to HSiCl3 in a low-temperature recycling step.
Collapse
Affiliation(s)
- Alexander G Sturm
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438, Frankfurt/Main, Germany
| | - Uhut S Karaca
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438, Frankfurt/Main, Germany
| | - Myron Heinz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438, Frankfurt/Main, Germany
| | - Thorsten Felder
- Momentive Performance Materials, Chempark, 51368, Leverkusen, Germany
| | - Kenrick M Lewis
- Momentive Performance Materials, 769 Old Saw Mill River Rd, Tarrytown, NY 10591, USA
| | - Norbert Auner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438, Frankfurt/Main, Germany
| | - Max C Holthausen
- Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Straße 7, 60438, Frankfurt/Main, Germany
| |
Collapse
|
4
|
Triphenylborane in Metal-Free Catalysis. Molecules 2023; 28:molecules28031340. [PMID: 36771006 PMCID: PMC9920172 DOI: 10.3390/molecules28031340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
The development and application of new organoboron reagents as Lewis acids in synthesis and metal-free catalysis have dramatically expanded over the past 20 years. In this context, we will show the recent uses of the simple and relatively weak Lewis acid BPh3-discovered 100 years ago-as a metal-free catalyst for various organic transformations. The first part will highlight catalytic applications in polymer synthesis such as the copolymerization of epoxides with CO2, isocyanate, and organic anhydrides to various polycarbonate copolymers and controlled diblock copolymers as well as alternating polyurethanes. This is followed by a discussion of BPh3 as a Lewis acid component in the frustrated Lewis pair (FLP) mediated cleavage of hydrogen and hydrogenation catalysis. In addition, BPh3-catalyzed reductive N-methylations and C-methylations with CO2 and silane to value-added organic products will be covered as well along with BPh3-catalyzed cycloadditions and insertion reactions. Collectively, this mini-review showcases the underexplored potential of commercially available BPh3 in metal-free catalysis.
Collapse
|
5
|
Sturm AG, Santowski T, Felder T, Lewis KM, Holthausen MC, Auner N. Müller–Rochow Reloaded: Single-Step Synthesis of Bifunctional Monosilanes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander G. Sturm
- Institute of Inorganic and Analytic Chemistry, Goethe-University, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany
| | - Tobias Santowski
- Institute of Inorganic and Analytic Chemistry, Goethe-University, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany
| | - Thorsten Felder
- Momentive Performance Materials, Chempark, 51368 Leverkusen, Germany
| | - Kenrick M. Lewis
- Momentive Performance Materials, 769 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Max C. Holthausen
- Institute of Inorganic and Analytic Chemistry, Goethe-University, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany
| | - Norbert Auner
- Institute of Inorganic and Analytic Chemistry, Goethe-University, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
6
|
Durin G, Fontaine A, Berthet JC, Nicolas E, Thuéry P, Cantat T. Metal-Free Catalytic Hydrogenolysis of Silyl Triflates and Halides into Hydrosilanes. Angew Chem Int Ed Engl 2022; 61:e202200911. [PMID: 35315969 DOI: 10.1002/anie.202200911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 01/13/2023]
Abstract
The metal-free catalytic hydrogenolysis of silyl triflates and halides (I, Br) to hydrosilanes is unlocked by using arylborane Lewis acids as catalysts. In the presence of a nitrogen base, the catalyst acts as a Frustrated Lewis Pair (FLP) able to split H2 and generate a boron hydride intermediate capable of reducing (pseudo)halosilanes. This metal-free organocatalytic system is competitive with metal-based catalysts and enables the formation of a variety of hydrosilanes at room temperature in high yields (>85 %) under a low pressure of H2 (≤10 bar).
Collapse
Affiliation(s)
- Gabriel Durin
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Albane Fontaine
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Jean-Claude Berthet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Emmanuel Nicolas
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette Cedex, France
| |
Collapse
|
7
|
Durin G, Fontaine A, Berthet J, Nicolas E, Thuéry P, Cantat T. Metal‐Free Catalytic Hydrogenolysis of Silyl Triflates and Halides into Hydrosilanes**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Gabriel Durin
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| | - Albane Fontaine
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| | | | - Emmanuel Nicolas
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE 91191 Gif-sur-Yvette Cedex France
| |
Collapse
|
8
|
Durin G, Berthet JC, Nicolas E, Thuéry P, Cantat T. The Role of (tBuPOCOP)Ir(I) and Iridium(III) Pincer Complexes in the Catalytic Hydrogenolysis of Silyl Triflates into Hydrosilanes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gabriel Durin
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEDEX 91191 Gif-sur-Yvette, France
| | - Jean-Claude Berthet
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEDEX 91191 Gif-sur-Yvette, France
| | - Emmanuel Nicolas
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEDEX 91191 Gif-sur-Yvette, France
| | - Pierre Thuéry
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEDEX 91191 Gif-sur-Yvette, France
| | - Thibault Cantat
- Université Paris-Saclay, CEA, CNRS, NIMBE, CEDEX 91191 Gif-sur-Yvette, France
| |
Collapse
|