Steinlandt PS, Hemming M, Xie X, Ivlev SI, Meggers E. Trading Symmetry for Stereoinduction in Tetradentate, non-C
2 -Symmetric Fe(II)-Complexes for Asymmetric Catalysis.
Chemistry 2023:e202300267. [PMID:
37104865 DOI:
10.1002/chem.202300267]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Indexed: 04/29/2023]
Abstract
A series of stereogenic-at-metal iron complexes comprising a non-C2 -symmetric chiral topology is introduced and applied to asymmetric 3d-transition metal catalysis. The chiral iron(II) complexes are built from chiral tetradentate N4-ligands containing a proline-derived amino pyrrolidinyl backbone which controls the relative (cis-α coordination) and absolute metal-centered configuration (Λ vs. Δ). Two chloride ligands complement the octahedral coordination sphere. The modular composition of the tetradentate ligands facilitates the straightforward incorporation of different terminal coordinating heteroaromatic groups into the scaffold. The influence of various combinations was evaluated in an asymmetric ring contraction of isoxazoles to 2H-azirines revealing that a decrease of symmetry is beneficial for the stereoinduction to obtain chiral products in up to 99 % yield and with up to 92 % ee. Conveniently, iron catalysis is feasible under open flask conditions with the bench-stable dichloro complexes exhibiting high robustness towards oxidative or hydrolytic decomposition. The versatility of non-racemic 2H-azirines was subsequently showcased with the conversion into a variety of quaternary α-amino acid derivatives.
Collapse