1
|
Li X, Sun K, Chen Y, Yuan Y. Study on the Gas-Chromic Character of Pd/TiO 2 for Fast Room-Temperature CO Detection. Molecules 2024; 29:3843. [PMID: 39202922 PMCID: PMC11357185 DOI: 10.3390/molecules29163843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
As a widely used support, TiO2 has often been combined with Pd to form highly sensitive gas-chromic materials. Herein, we prepared a series of Pd/TiO2 catalysts with different Pd content (from 0.1 to 5 wt.%) by the impregnation method for their utilization in fast room-temperature CO detection. The detection was simply based on visible color change when the Pd/TiO2 was exposed to CO. The sample with 1 wt.% Pd/TiO2 presented an excellent CO gasochromic character, associated with a maximum chromatic aberration value of 90 before and after CO exposure. Systematic catalyst characterizations of XPS, FT-IR, CO-TPD, and N2 adsorption-desorption and density functional theory calculations for the CO adsorption and charge transfer over the Pd and PdO surfaces were further carried out. It was found that the interaction between CO and the Pd surface was strong, associated with a large adsorption energy of -1.99 eV and charge transfer of 0.196 e. The color change was caused by a reduction in Pd2+ to metallic Pd0 over the Pd/TiO2 surface after CO exposure.
Collapse
Affiliation(s)
- Xinbao Li
- College of Energy Environment and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Kai Sun
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Ying Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| | - Ye Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Zabilska A, Zabilskiy M, Nuguid RJG, Clark AH, Sadykov II, Nachtegaal M, Kröcher O, Safonova OV. Origin of the Activity Trend in the Oxidative Dehydrogenation of Ethanol over VO x /CeO 2. Angew Chem Int Ed Engl 2023; 62:e202301297. [PMID: 36855938 DOI: 10.1002/anie.202301297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/02/2023]
Abstract
Supported vanadia (VOx ) is a versatile catalyst for various redox processes where ceria-supported VOx have shown to be particularly active in the oxidative dehydrogenation (ODH) of alcohols. In this work, we clarify the origin of the volcano-shaped ethanol ODH activity trend for VOx /CeOx catalysts using operando quick V K- and Ce L3 - edge XAS experiments performed under transient conditions. We quantitatively demonstrate that both vanadium and cerium are synergistically involved in alcohol ODH. The concentration of reversible Ce4+ /Ce3+ species was identified as the main descriptor of the alcohol ODH activity. The activity drop in the volcano plot, observed at above ca. 3 V nm-2 surface loading (ca. 30 % of VOx monolayer coverage), is related to the formation of spectator V4+ and Ce3+ species, which were identified here for the first time. These results might prove to be helpful for the rational optimization of VOx /CeO2 catalysts and the refinement of the theoretical models.
Collapse
Affiliation(s)
- Anna Zabilska
- Paul Scherrer Institute, 5232, Villigen, Switzerland
- École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | | | | | - Adam H Clark
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | | | - Oliver Kröcher
- Paul Scherrer Institute, 5232, Villigen, Switzerland
- École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | | |
Collapse
|
3
|
Ahn SY, Jang WJ, Shim JO, Jeon BH, Roh HS. CeO 2-based oxygen storage capacity materials in environmental and energy catalysis for carbon neutrality: extended application and key catalytic properties. CATALYSIS REVIEWS 2023. [DOI: 10.1080/01614940.2022.2162677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Seon-Yong Ahn
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, South Korea
| | - Won-Jun Jang
- Department of Environmental and Energy Engineering, Kyungnam University, Changwon-si, South Korea
| | - Jae-Oh Shim
- Department of Chemical Engineering, Wonkwang University, Iksan-si, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, South Korea
| | - Hyun-Seog Roh
- Department of Environmental and Energy Engineering, Yonsei University, Wonju-si, South Korea
| |
Collapse
|
4
|
Stonkus OA, Zadesenets AV, Slavinskaya EM, Stadnichenko AI, Svetlichnyi VA, Shubin YV, Korenev SV, Boronin AI. Pd/CeO2-SnO2 catalysts with varying tin content: Promotion of catalytic properties and structure modification. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
5
|
Jing Y, Wang G, Mine S, Kawai J, Toyoshima R, Kondoh H, Zhang X, Nagaoka S, Shimizu KI, Toyao T. Promoting Effect of Basic Metal Additives on DeNOx Reactions over Pt-Based Three-Way Catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Parmar S, Sankaranarayanan TM, Ravichandran G. Short Review on CO Combustion Promoters for FCC Regenerator. CATALYSIS SURVEYS FROM ASIA 2022. [DOI: 10.1007/s10563-022-09368-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Singh A, Singh N, Kaur N, Jang DO. Gold nanoparticles supported on ionic‐liquid‐functionalized cellulose (Au@CIL): a heterogeneous catalyst for the selective reduction of aromatic nitro compounds. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Anoop Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab India
| | - Narinder Singh
- Department of Chemistry Indian Institute of Technology Ropar Punjab India
| | - Navneet Kaur
- Department of Chemistry Panjab University Chandigarh India
| | - Doo Ok Jang
- Department of Chemistry Yonsei University Wonju Korea
| |
Collapse
|
8
|
Chandel M, Kumar P, Arora A, Kataria S, Dubey SC, M D, Kaur K, Sahu BK, De Sarkar A, Shanmugam V. Nanocatalytic Interface to Decode the Phytovolatile Language for Latent Crop Diagnosis in Future Farms. Anal Chem 2022; 94:11081-11088. [PMID: 35905143 DOI: 10.1021/acs.analchem.2c02244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crop diseases cause the release of volatiles. Here, the use of an SnO2-based chemoresistive sensor for early diagnosis has been attempted. Ionone is one of the signature volatiles released by the enzymatic and nonenzymatic cleavage of carotene at the latent stage of some biotic stresses. To our knowledge, this is the first attempt at sensing volatiles with multiple oxidation sites, i.e., ionone (4 oxidation sites), from the phytovolatile library, to derive stronger signals at minimum concentrations. Further, the sensitivity was enhanced on an interdigitated electrode by the addition of platinum as the dopant for a favorable space charge layer and for surface island formation for reactive interface sites. The mechanistic influence of oxygen vacancy formation was studied through detailed density functional theory (DFT) calculations and reactive oxygen-assisted enhanced binding through X-ray photoelectron spectroscopy (XPS) analysis.
Collapse
Affiliation(s)
- Mahima Chandel
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Prem Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Anu Arora
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Sarita Kataria
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Sunil Chandra Dubey
- Plant Protection and Biosafety, Indian Council of Agricultural Research, Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi, New Delhi 110001, India
| | - Djanaguiraman M
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu 641003, India
| | - Kamaljit Kaur
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Bandana Kumari Sahu
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Abir De Sarkar
- Quantum Materials and Devices Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| | - Vijayakumar Shanmugam
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector- 81, Sahibzada Ajit Singh Nagar, Punjab 140306, India
| |
Collapse
|
9
|
Wang G, Jing Y, Ting KW, Maeno Z, Zhang X, Nagaoka S, Shimizu KI, Toyao T. Effect of oxygen storage materials on the performance of Pt-based three-way catalysts. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00469k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pt supported on oxygen storage materials (CeO2 and CeO2–ZrO2) as effective three-way catalysts.
Collapse
Affiliation(s)
- Gang Wang
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Yuan Jing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Kah Wei Ting
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Zen Maeno
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
| | - Xiaorui Zhang
- Johnson Matthey Japan G.K., 5123-3, Kitsuregawa, Sakura, Tochigi 329-1412, Japan
| | - Shuhei Nagaoka
- Johnson Matthey Japan G.K., 5123-3, Kitsuregawa, Sakura, Tochigi 329-1412, Japan
| | - Ken-ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Takashi Toyao
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo 001-0021, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
10
|
Wei X, Zhou Y, Sun X, Jiang F, Zhang J, Wu Z, Wang F, Li G. Hydrogenation of pentenal over supported Pt nanoparticles: influence of Lewis-acid sites in the conversion pathway. NEW J CHEM 2021. [DOI: 10.1039/d1nj03979b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The superb TOF and high selectivity of Pt/CeAl are associated with the surface properties (e.g. medium Lewis acidic site). The unsaturated Ce4+/Al3+ cations pairs act as the acid sites and electron acceptors to polarize the CO bonds.
Collapse
Affiliation(s)
- Xuejiao Wei
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yajuan Zhou
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Xiaonan Sun
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Fuhua Jiang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Jintao Zhang
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Zeying Wu
- School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213032, China
| | - Fei Wang
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical and Engineering, Changzhou University, Changzhou 213164, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|