1
|
Hong H, Liu D, Yang B, Cao Q, Liu C, Wu L, Wang D. Exploring the Intrinsic Effects of Lattice Strain on the Hydrogen Evolution Reaction via Electric-Field-Induced Strain in FePt Films. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69599-69607. [PMID: 39630485 DOI: 10.1021/acsami.4c16120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Strain engineering has the potential to modify the adsorption process and enhance the electrocatalytic activity, especially in the hydrogen evolution reaction (HER). However, the introduction of lattice strain in electrocatalysts is often accompanied by a change in chemical composition, surface morphology, or phase structure to a certain extent, impeding the investigation of the intrinsic strain effect on HER. In this work, the FePt film was deposited on a Pb(Mg1/3Nb2/3)0.7Ti0.3O3 (PMN-PT) substrate to construct the FePt/PMN-PT heterojunction, and the continuously adjustable nonvolatile lattice strain is induced by the asymmetric electric field manipulation avoiding the aforementioned disturbance factors. HER experimental results demonstrate a drastic improvement in the overpotential of FePt with the largest tensile strain of 3000 ppm, and the observed variation of HER performance indicates an upward trend as the tensile strain increases. Density functional theory calculations reveal that the Gibbs free energy of FePt with the appropriate tensile strain is closer to zero, attributed to the downward shift of the d-band center. Our study provides an approach to continuously regulate the lattice strain with less interference factors, facilitating the exploration of the intrinsic strain effect on a wide range of catalysts.
Collapse
Affiliation(s)
- Hong Hong
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China
| | - Dongxue Liu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China
| | - Bo Yang
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Material Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Qingqi Cao
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China
| | - Chaoran Liu
- Hangzhou Dianzi University, Hangzhou 310018, China
| | - Liqian Wu
- Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dunhui Wang
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Provincial Key Laboratory for Nanotechnology, School of Physics, Nanjing University, Nanjing 210093, China
- Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
2
|
Fu X, Huang X, Cen Y, Ren X, Yan L, Jin S, Zhuang Z, Li W, Tian S. Ru Nanoparticles Encapsulated by Defective TiO 2 Boost the Hydrogen Oxidation/ Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406387. [PMID: 39385625 DOI: 10.1002/smll.202406387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/21/2024] [Indexed: 10/12/2024]
Abstract
The development of efficient and durable electrocatalysts for the alkaline hydrogen oxidation/evolution reaction is crucial for anion exchange membrane fuel cells/water electrolyzers. However, designing such electrocatalysts poses a challenge due to the need for optimizing various adsorbates. Herein, highly dispersed Ru nanoparticles catalysts is reported encapsulated and supported by defective anatase phase of titanium dioxide (named as Ru NPs/def-TiO2(A)) for boosting hydrogen-cycle electrocatalysis with robust anti-CO-poisoning in alkaline conditions. The Ru NPs/def-TiO2(A) achieves a high-quality activity of 7.65 A mgRu -1, which is 23.2 and 9.5-fold higher than commercial Ru/C and Pt/C in alkaline HOR. Moreover, this catalyst exhibits an outstanding overpotential of 21 mV at 10 mA cm-2 in alkaline HER. Hydrogen underpotential deposition (Hupd) and CO stripping experiments demonstrate that Ru NPs/def-TiO2(A) has the optimized H*, OH*, and CO* adsorption strength, enabling the Ru NPs/def-TiO2(A) catalyst to display excellent and robust HOR/HER performance under alkaline conditions. Using density functional theory calculations, the enhanced HOR performance mechanism for the Ru NPs/def-TiO2(A) catalyst originates from the TiO2 step face in contact with the Ru nanoparticles, indicating that the kinetics of water formation are considerably more favorable at the Ru NPs/def-TiO2(A) interface.
Collapse
Affiliation(s)
- Xiuting Fu
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoxiao Huang
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaping Cen
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaoyang Ren
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Yan
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shao Jin
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wanlu Li
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California San Diego, CA, 92093, USA
- Program in Materials Science and Engineering, University of California San Diego, CA, 92093, USA
| | - Shubo Tian
- International Joint Bioenergy Laboratory of Ministry of Education, State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Wu CY, Hsiao YC, Chen Y, Lin KH, Lee TJ, Chi CC, Lin JT, Hsu LC, Tsai HJ, Gao JQ, Chang CW, Kao IT, Wu CY, Lu YR, Pao CW, Hung SF, Lu MY, Zhou S, Yang TH. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. SCIENCE ADVANCES 2024; 10:eadl3693. [PMID: 39058768 PMCID: PMC11277269 DOI: 10.1126/sciadv.adl3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
We report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts. Operando synchrotron x-ray absorption spectroscopy and density functional theory simulations confirm the cocktail effect arising from the multielement composition. This effect optimizes hydrogen-adsorption free energy and contributes to the remarkable catalytic activity observed in PtRuFeCoNi. In situ electron microscopy captures the phase transformation of metastable PtRuFeCoNi during the annealing process. They transform from random atomic mixing (25°C), to ordered L10 (300°C) and L12 (400°C) intermetallic, and finally phase-separated states (500°C).
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yueh-Chun Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chong-Chi Chi
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jui-Tai Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jia-Qi Gao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Ting Kao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
4
|
Liang QM, Chen SK, Ding Z, Wang JC, Hu C, Shi J, Wang S, Han L, Yang Y. Continuous Strain Regulation of Palladium-Gold at the Atomic Level. NANO LETTERS 2024; 24:7637-7644. [PMID: 38874010 DOI: 10.1021/acs.nanolett.4c01395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Revealing the effect of surface structure changes on the electrocatalytic performance is beneficial to the development of highly efficient catalysts. However, precise regulation of the catalyst surface at the atomic level remains challenging. Here, we present a continuous strain regulation of palladium (Pd) on gold (Au) via a mechanically controllable surface strain (MCSS) setup. It is found that the structural changes induced by the strain setup can accelerate electron transfer at the solid-liquid interface, thus achieving a significantly improved performance toward hydrogen evolution reaction (HER). In situ X-ray diffraction (XRD) experiments further confirm that the enhanced activity is attributed to the increased interplanar spacing resulting from the applied strain. Theoretical calculations reveal that the tensile strain modulates the electronic structure of the Pd active sites and facilitates the desorption of the hydrogen intermediates. This work provides an effective approach for revealing the relationships between the electrocatalyst surface structure and catalytic activity.
Collapse
Affiliation(s)
- Qing-Man Liang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Su-Kang Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Zan Ding
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Ji-Chun Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Chun Hu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Jia Shi
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Shaojie Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| | - Lu Han
- School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
| | - Yang Yang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Joint Surgery and Sports Medicine, Zhongshan Hospital, Xiamen University, Xiamen 361005, China
| |
Collapse
|
5
|
Zhao Q, Zhang Y, Ke C, Yang W, Yue J, Yang X, Xiao W. Pt nanoparticles anchored by oxygen vacancies in MXenes for efficient electrocatalytic hydrogen evolution reaction. NANOSCALE 2024; 16:8020-8027. [PMID: 38545879 DOI: 10.1039/d4nr00020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The improvement of the hydrogen evolution reaction (HER) performance of nanomaterials is associated with the interfacial synergistic interaction and their hydrogen adsorption kinetics. Nevertheless, it is still a challenge to accelerate the proton transfer and optimize the HER kinetics by constructing Pt-supported heterostructures based on the hydrogen spillover phenomenon. Herein, oxygen vacancies on the surface of MXene nanosheets were constructed via a high-temperature annealing method, which was employed to anchor/stabilize Pt nanoparticles and fabricate a Pt/MXene heterostructure. EPR and XPS analyses verified the presence of oxygen vacancies, which could enhance the intrinsic HER activity of the MXene. The HER catalytic performance was investigated by taking into account the surface structure of the MXene affected by the annealing temperature, the concentration of Pt and the number of deposition cycles. Electrochemical results showed that Pt/MXene with higher utilization of Pt was obtained at 900 °C and 0.05 mgPt mL-1. The 0.05-Pt/MXene-900 obtained at deposition of 60 cycles in 0.5 M H2SO4 solution exhibited the optimized HER activity. The overpotential was 22 mV at a current density of 10 mA cm-2 and the Tafel slope was 42.41 mV dec-1. Furthermore, the accelerated HER kinetics was mainly due to the electron trapping ability of the MXene, small particles of Pt, as well as the enhanced charge transfer between the oxygen vacancies of the MXene and Pt. This strategy for constructing Pt-supported heterostructures based on the vacancy anchoring effects provides new ideas for the design of well-defined electrocatalysts toward the HER.
Collapse
Affiliation(s)
- Qin Zhao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Yue Zhang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Changwang Ke
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Weilin Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Jianshu Yue
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiaofei Yang
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
| | - Weiping Xiao
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Liu G, Shih AJ, Deng H, Ojha K, Chen X, Luo M, McCrum IT, Koper MTM, Greeley J, Zeng Z. Site-specific reactivity of stepped Pt surfaces driven by stress release. Nature 2024; 626:1005-1010. [PMID: 38418918 DOI: 10.1038/s41586-024-07090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Heterogeneous catalysts are widely used to promote chemical reactions. Although it is known that chemical reactions usually happen on catalyst surfaces, only specific surface sites have high catalytic activity. Thus, identifying active sites and maximizing their presence lies at the heart of catalysis research1-4, in which the classic model is to categorize active sites in terms of distinct surface motifs, such as terraces and steps1,5-10. However, such a simple categorization often leads to orders of magnitude errors in catalyst activity predictions and qualitative uncertainties of active sites7,8,11,12, thus limiting opportunities for catalyst design. Here, using stepped Pt(111) surfaces and the electrochemical oxygen reduction reaction (ORR) as examples, we demonstrate that the root cause of larger errors and uncertainties is a simplified categorization that overlooks atomic site-specific reactivity driven by surface stress release. Specifically, surface stress release at steps introduces inhomogeneous strain fields, with up to 5.5% compression, leading to distinct electronic structures and reactivity for terrace atoms with identical local coordination, and resulting in atomic site-specific enhancement of ORR activity. For the terrace atoms flanking both sides of the step edge, the enhancement is up to 50 times higher than that of the atoms in the middle of the terrace, which permits control of ORR reactivity by either varying terrace widths or controlling external stress. Thus, the discovery of the above synergy provides a new perspective for both fundamental understanding of catalytically active atomic sites and design principles of heterogeneous catalysts.
Collapse
Affiliation(s)
- Guangdong Liu
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha, China
| | - Arthur J Shih
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Huiqiu Deng
- Hunan Provincial Key Laboratory of High-Energy Scale Physics and Applications, School of Physics and Electronics, Hunan University, Changsha, China
| | - Kasinath Ojha
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Xiaoting Chen
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Mingchuan Luo
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Ian T McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, USA
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jeffrey Greeley
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| | - Zhenhua Zeng
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
7
|
Chen Y, Zhao X, Yan H, Sun L, Chen S, Zhang S, Zhang J. Manipulating Pt-skin of porous network Pt-Cu alloy nanospheres toward efficient oxygen reduction. J Colloid Interface Sci 2023; 652:1006-1015. [PMID: 37639923 DOI: 10.1016/j.jcis.2023.08.134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023]
Abstract
Designing Pt-skin on the catalyst surface is critical to developing efficient and stable electrocatalysts toward oxygen reduction reaction (ORR) in proton exchange membrane fuel cells. In this paper, an acidic reductant is proposed to synchronously manipulate in-situ growth of Pt-skin on the surface of alloyed Pt-Cu nanospheres (PtCuNSs) by a facile one-pot synthesis in an aqueous solution. Ascorbic acid can create a Pt-skin of three atomic layers to make the typical PtCu-alloy@Pt-skin core/shell nanostructure rather than the uniform alloys generated by using alkaline reductants. Surfactant as soft-template can make the alloyed PtCuNSs with a three-dimensional porous network structure. Multiple characterizations of XRD, XPS and XAFS are used to confirm Pt-alloying with Cu and formation of core/shell structure of such a catalyst. This PtCuNSs/C exhibits a half-wave potential of 0.913 V (vs. RHE), with mass activity and specific activity about 3.5 and 6.4 times higher than those of Pt/C, respectively. Fuel cell tests verify the excellent activity of PtCuNSs/C catalyst with a maximum power density of about 1.2 W cm-2. Moreover, this catalyst shows excellent stability, achieving a long-term operation of 40,000 cycles. Furthermore, theoretical calculations reveal the enhancement effect of characteristic PtCu-alloy@Pt-skin nanostructure on both catalytic ORR activity and stability.
Collapse
Affiliation(s)
- Yizhe Chen
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiao Zhao
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Huangli Yan
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan 430072, Hubei, China
| | - Liangyu Sun
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shengli Chen
- College of Chemistry and Molecular Sciences, Wuhan University, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan 430072, Hubei, China
| | - Shiming Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiujun Zhang
- Institute for Sustainable Energy/College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
8
|
Gao G, Zhu G, Chen X, Sun Z, Cabot A. Optimizing Pt-Based Alloy Electrocatalysts for Improved Hydrogen Evolution Performance in Alkaline Electrolytes: A Comprehensive Review. ACS NANO 2023; 17:20804-20824. [PMID: 37922197 DOI: 10.1021/acsnano.3c05810] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2023]
Abstract
The splitting of water through electrocatalysis offers a sustainable method for the production of hydrogen. In alkaline electrolytes, the lack of protons forces water dissociation to occur before the hydrogen evolution reaction (HER). While pure Pt is the gold standard electrocatalyst in acidic electrolytes, since the 5d orbital in Pt is nearly fully occupied, when it overlaps with the molecular orbital of water, it generates a Pauli repulsion. As a result, the formation of a Pt-H* bond in an alkaline environment is difficult, which slows the HER and negates the benefits of using a pure Pt catalyst. To overcome this limitation, Pt can be alloyed with transition metals, such as Fe, Co, and Ni. This approach has the potential not only to enhance the performance but also to increase the Pt dispersion and decrease its usage, thus overall improving the catalyst's cost-effectiveness. The excellent water adsorption and dissociation ability of transition metals contributes to the generation of a proton-rich local environment near the Pt-based alloy that promotes HER. Significant progress has been achieved in comprehending the alkaline HER mechanism through the manipulation of the structure and composition of electrocatalysts based on the Pt alloy. The objective of this review is to analyze and condense the latest developments in the production of Pt-based alloy electrocatalysts for alkaline HER. It focuses on the modified performance of Pt-based alloys and clarifies the design principles and catalytic mechanism of the catalysts from both an experimental and theoretical perspective. This review also highlights some of the difficulties encountered during the HER and the opportunities for increasing the HER performance. Finally, guidance for the development of more efficient Pt-based alloy electrocatalysts is provided.
Collapse
Affiliation(s)
- Guoliang Gao
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
- i-lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Guang Zhu
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Xueli Chen
- Key Laboratory of Spin Electron and Nanomaterials of Anhui Higher Education Institutes, Suzhou University, Suzhou 234000, China
| | - Zixu Sun
- Key Lab for Special Functional Materials of Ministry of Education, National and Local Joint Engineering Research Center for High Efficiency Display and Lighting Technology, School of Materials Science and Engineering, Collaborative Innovation Center of Nano Functional Materials and Applications, Henan University, Kaifeng 475004, China
| | - Andreu Cabot
- Catalonia Institute for Energy Research - IREC, Sant Adrià de Besòs, Barcelona 08930, Spain
- Catalan Institution for Research and Advanced Studies - ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
9
|
Liu K, Qiao Z, Gao C. Preventing the Galvanic Replacement Reaction toward Unconventional Bimetallic Core-Shell Nanostructures. Molecules 2023; 28:5720. [PMID: 37570689 PMCID: PMC10419990 DOI: 10.3390/molecules28155720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/08/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
A bimetallic core-shell nanostructure is a versatile platform for achieving intriguing optical and catalytic properties. For a long time, this core-shell nanostructure has been limited to ones with noble metal cores. Otherwise, a galvanic replacement reaction easily occurs, leading to hollow nanostructures or completely disintegrated ones. In the past few years, great efforts have been devoted to preventing the galvanic replacement reaction, thus creating an unconventional class of core-shell nanostructures, each containing a less-stable-metal core and a noble metal shell. These new nanostructures have been demonstrated to show unique optical and catalytic properties. In this work, we first briefly summarize the strategies for synthesizing this type of unconventional core-shell nanostructures, such as the delicately designed thermodynamic control and kinetic control methods. Then, we discuss the effects of the core-shell nanostructure on the stabilization of the core nanocrystals and the emerging optical and catalytic properties. The use of the nanostructure for creating hollow/porous nanostructures is also discussed. At the end of this review, we discuss the remaining challenges associated with this unique core-shell nanostructure and provide our perspectives on the future development of the field.
Collapse
Affiliation(s)
| | | | - Chuanbo Gao
- Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China; (K.L.); (Z.Q.)
| |
Collapse
|
10
|
Jin D, Qiao F, Chu H, Xie Y. Progress in electrocatalytic hydrogen evolution of transition metal alloys: synthesis, structure, and mechanism analysis. NANOSCALE 2023; 15:7202-7226. [PMID: 37038769 DOI: 10.1039/d3nr00514c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
At present, the problems of high energy consumption and low efficiency in electrocatalytic hydrogen production have limited the large-scale industrial application of this technology. Constructing effective catalysts has become the way to solve these problems. Transition metal alloys have been proved to be very promising materials in hydrogen evaluation reaction (HER). In this study, the related theories and characterization methods of electrocatalysis are summarized, and the latest progress in the application of binary, ternary, and high entropy alloys to HER in recent years is analyzed and studied. The synthesis methods and optimization strategies of transition metal alloys, including composition regulation, hybrid engineering, phase engineering, and morphological engineering were emphatically discussed, and the principles and performance mechanism analysis of these strategies were discussed in detail. Although great progress has been made in alloy catalysts, there is still considerable room for applications. Finally, the challenges, prospects, and research directions of transition metal alloys in the future were predicted.
Collapse
Affiliation(s)
- Dunyuan Jin
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Fen Qiao
- School of Energy & Power Engineering, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Huaqiang Chu
- School of Energy and Environment, Anhui University of Technology, Ma'anshan 243002, Anhui, P.R. China
| | - Yi Xie
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, China
| |
Collapse
|
11
|
Guo K, Han X, Wei S, Bao J, Lin Y, Li Y, Xu D. Functional Surfactant-Induced Long-Range Compressive Strain in Curved Ultrathin Nanodendrites Boosts Electrocatalysis. NANO LETTERS 2023; 23:1085-1092. [PMID: 36649599 DOI: 10.1021/acs.nanolett.2c04729] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Curved ultrathin PtPd nanodendrites (CNDs) with long-range compressive strain and highly branched feature are first prepared by a functional surfactant-induced strategy. Precise synthesis realized the construction of both curved and flat PtPd nanodendrites (NDs) with the same atomic ratio, which contributed to exploration of the strain effect on electrocatalytic performance alone. Abundant evidence is provided to confirm that the long-range compressive strain in curved PtPd architectures can effectively tailor the local coordination environment of active sites, lower the position of the d-band center, weaken the adsorption energy of the intermediates (e.g., H* and CO*), and ultimately increase their intrinsic activity. The density functional theory (DFT) calculations further reveal that the introduction of compressive strain weakens the Gibbs free-energy of the intermediate (ΔGH*), which is favorable for accelerating the hydrogen evolution reaction (HER) kinetics. A similar enhanced electrocatalytic performance can also be found in the methanol oxidation reaction (MOR).
Collapse
Affiliation(s)
- Ke Guo
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shuya Wei
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yafei Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Dongdong Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
12
|
Pt3Ni alloy catalyst coupled with three-dimensional nitrogen-doped graphene for enhancing the alkaline hydrogen evolution. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Zhou B, Gao R, Zou JJ, Yang H. Surface Design Strategy of Catalysts for Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202336. [PMID: 35665595 DOI: 10.1002/smll.202202336] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen, a new energy carrier that can replace traditional fossil fuels, is seen as one of the most promising clean energy sources. The use of renewable electricity to drive hydrogen production has very broad prospects for addressing energy and environmental problems. Therefore, many researchers favor electrolytic water due to its green and low-cost advantages. The electrolytic water reaction comprises the oxygen evolution reaction (OER) and the hydrogen evolution reaction (HER). Understanding the OER and HER mechanisms in acidic and alkaline processes contributes to further studying the design of surface regulation of electrolytic water catalysts. The OER and HER catalysts are mainly reviewed for defects, doping, alloying, surface reconstruction, crystal surface structure, and heterostructures. Besides, recent catalysts for overall water splitting are also reviewed. Finally, this review paves the way to the rational design and synthesis of new materials for highly efficient electrocatalysis.
Collapse
Affiliation(s)
- Binghui Zhou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ruijie Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
| | - Huaming Yang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 200237, China
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China
- State Key Lab of Powder Metallurgy, Central South University, Changsha, 410083, China
| |
Collapse
|
14
|
Sun YL, A YL, Yue MF, Chen HQ, Ze H, Wang YH, Dong JC, Tian ZQ, Fang PP, Li JF. Exploring the Effect of Pd on the Oxygen Reduction Performance of Pt by In Situ Raman Spectroscopy. Anal Chem 2022; 94:4779-4786. [PMID: 35271253 DOI: 10.1021/acs.analchem.1c05566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Directly monitoring the oxygen reduction reaction (ORR) process in situ is very important to deeply understand the reaction mechanism and is a critical guideline for the design of high-efficiency catalysts, but there is still lack of definite in situ evidence to clarify the effect between adsorbed intermediates and the strain/electronic effect for enhanced ORR performance. Herein, in situ surface-enhanced Raman spectroscopy (SERS) was employed to detect the intermediates during the ORR process on the Au@Pd@Pt core/shell heterogeneous nanoparticles (NPs). Direct spectroscopic evidence of the *OOH intermediate was obtained, and an obvious red shift of the *OOH frequency was identified with the controllable shell thickness of Pd. Detailed experimental characterizations and density functional theory (DFT) calculations demonstrated that such improved ORR activity after inducing Pd into Au@Pt NPs can be attributed to the optimized adsorbate-substrate interaction due to the strain and electronic effect, leading to a higher Pt-O binding energy and a lower O-O binding energy, which was conducive to O-O dissociation and promoted the subsequent reaction. Notably, this work illustrates a relationship between the performance and strain/electronic effect via the intermediate detected by SERS and paves the way for the construction of ORR electrocatalysts with high performance.
Collapse
Affiliation(s)
- Yu-Lin Sun
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Laboratory of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.,State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yao-Lin A
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Mu-Fei Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Heng-Quan Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Huajie Ze
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Ping-Ping Fang
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, the Key Laboratory of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, College of Energy, Xiamen University, Xiamen 361005, China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|