1
|
Ma H, Jiao Y, Guo W, Liu X, Li Y, Wen X. Machine learning predicts atomistic structures of multielement solid surfaces for heterogeneous catalysts in variable environments. Innovation (N Y) 2024; 5:100571. [PMID: 38379790 PMCID: PMC10878119 DOI: 10.1016/j.xinn.2024.100571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024] Open
Abstract
Solid surfaces usually reach thermodynamic equilibrium through particle exchange with their environment under reactive conditions. A prerequisite for understanding their functionalities is detailed knowledge of the surface composition and atomistic geometry under working conditions. Owing to the large number of possible Miller indices and terminations involved in multielement solids, extensive sampling of the compositional and conformational space needed for reliable surface energy estimation is beyond the scope of ab initio calculations. Here, we demonstrate, using the case of iron carbides in environments with varied carbon chemical potentials, that the stable surface composition and geometry of multielement solids under reactive conditions, which involve large compositional and conformational spaces, can be predicted at ab initio accuracy using an approach that combines the bond valence model, Gaussian process regression, and ab initio thermodynamics. Determining the atomistic structure of surfaces under working conditions paves the way toward identifying the true active sites of multielement catalysts in heterogeneous catalysis.
Collapse
Affiliation(s)
- Huan Ma
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
| | - Yueyue Jiao
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
| | - Wenping Guo
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
| | - Xingchen Liu
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Industry−University Cooperation Base between Beijing Information S&T University and Synfuels China Co., Ltd., Beijing 100101, China
| | - Xiaodong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd., Beijing 101400, China
- Beijing Advanced Innovation Center for Materials Genome Engineering, Industry−University Cooperation Base between Beijing Information S&T University and Synfuels China Co., Ltd., Beijing 100101, China
| |
Collapse
|
2
|
Benson RL, Yadavalli SS, Stamatakis M. Speeding up the Detection of Adsorbate Lateral Interactions in Graph-Theoretical Kinetic Monte Carlo Simulations. J Phys Chem A 2023; 127:10307-10319. [PMID: 37988475 PMCID: PMC11065322 DOI: 10.1021/acs.jpca.3c05581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Kinetic Monte Carlo (KMC) has become an indispensable tool in heterogeneous catalyst discovery, but realistic simulations remain computationally demanding on account of the need to capture complex and long-range lateral interactions between adsorbates. The Zacros software package (https://zacros.org) adopts a graph-theoretical cluster expansion (CE) framework that allows such interactions to be computed with a high degree of generality and fidelity. This involves solving a series of subgraph isomorphism problems in order to identify relevant interaction patterns in the lattice. In an effort to reduce the computational burden, we have adapted two well-known subgraph isomorphism algorithms, namely, VF2 and RI, for use in KMC simulations and implemented them in Zacros. To benchmark their performance, we simulate a previously established model of catalytic NO oxidation, treating the O* lateral interactions with a series of progressively larger CEs. For CEs with long-range interactions, VF2 and RI are found to provide impressive speedups relative to simpler algorithms. RI performs best, giving speedups reaching more than 150× when combined with OpenMP parallelization. We also simulate a recently developed methane cracking model, showing that RI offers significant improvements in performance at high surface coverages.
Collapse
Affiliation(s)
- Raz L. Benson
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | - Sai Sharath Yadavalli
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | | |
Collapse
|
3
|
Wang X, Pei C, Zhao ZJ, Chen S, Li X, Sun J, Song H, Sun G, Wang W, Chang X, Zhang X, Gong J. Coupling acid catalysis and selective oxidation over MoO 3-Fe 2O 3 for chemical looping oxidative dehydrogenation of propane. Nat Commun 2023; 14:2039. [PMID: 37041149 PMCID: PMC10090184 DOI: 10.1038/s41467-023-37818-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/31/2023] [Indexed: 04/13/2023] Open
Abstract
Redox catalysts play a vital role in chemical looping oxidative dehydrogenation processes, which have recently been considered to be a promising prospect for propylene production. This work describes the coupling of surface acid catalysis and selective oxidation from lattice oxygen over MoO3-Fe2O3 redox catalysts for promoted propylene production. Atomically dispersed Mo species over γ-Fe2O3 introduce effective acid sites for the promotion of propane conversion. In addition, Mo could also regulate the lattice oxygen activity, which makes the oxygen species from the reduction of γ-Fe2O3 to Fe3O4 contribute to selectively oxidative dehydrogenation instead of over-oxidation in pristine γ-Fe2O3. The enhanced surface acidity, coupled with proper lattice oxygen activity, leads to a higher surface reaction rate and moderate oxygen diffusion rate. Consequently, this coupling strategy achieves a robust performance with 49% of propane conversion and 90% of propylene selectivity for at least 300 redox cycles and ultimately demonstrates a potential design strategy for more advanced redox catalysts.
Collapse
Affiliation(s)
- Xianhui Wang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Chunlei Pei
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Zhi-Jian Zhao
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Sai Chen
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Binhai New City, Fuzhou, China
| | - Xinyu Li
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Jiachen Sun
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Hongbo Song
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Guodong Sun
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Binhai New City, Fuzhou, China
| | - Wei Wang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Binhai New City, Fuzhou, China
| | - Xin Chang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
| | - Xianhua Zhang
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Binhai New City, Fuzhou, China
| | - Jinlong Gong
- School of Chemical Engineering & Technology, Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, 300072, Tianjin, China.
- Collaborative Innovation Center for Chemical Science & Engineering (Tianjin), 300072, Tianjin, China.
- Haihe Laboratory of Sustainable Chemical Transformations, 300192, Tianjin, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, 350207, Binhai New City, Fuzhou, China.
| |
Collapse
|
4
|
Tan C, Liu H, Qin Y, Li L, Wang H, Zhu X, Ge Q. Correlation between the Properties of Surface Lattice Oxygen on NiO and Its Reactivity and Selectivity towards the Oxidative Dehydrogenation of Propane. Chemphyschem 2023; 24:e202200539. [PMID: 36223257 DOI: 10.1002/cphc.202200539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/12/2022] [Indexed: 11/12/2022]
Abstract
Modified NiO catalysts with controllable vacancies and dopants are promising for alkene production from oxidative dehydrogenation (ODH) of light alkanes, and a molecular understanding of the modification on elementary reaction steps would facilitate the design of highly efficient catalysts and catalytic processes. In this study, density functional theory (DFT) calculations was used to map out the complete reaction pathways of propane ODH on the NiO (100) surfaces with different modifiers. The results demonstrated that the presence of vacancies (O and Ni) and dopants (Li and Al) alters the electrophilicity of surface oxygen species, which in turn affects the reactivity towards C-H bond activation and the overall catalytic activity and selectivity. The strongly electrophilic O favors a radical mechanism for the first C-H activation on O followed by the second C-H activation on O-O site, whereas weak electrophilic O favors concerted C-H bond breaking over Ni-O site. The C-H bond activation proceeds through a late transition state, characterized by the almost completion of the O-H bond formation. Consequently, the adsorption energy of H adatom on O rather than p-band center or Bader charge of O has been identified to be an accurate descriptor to predict the activation barrier for C-H breaking (activity) as well as the difference between the activation barriers of propene and CH3 CCH3 (selectivity) of ODH.
Collapse
Affiliation(s)
- Chunxiao Tan
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Huixian Liu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuyao Qin
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Liwen Li
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hua Wang
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xinli Zhu
- Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qingfeng Ge
- Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL, 62901, United States
| |
Collapse
|
5
|
Chen P, Liu Y, Xu Y, Guo C, Hu P. Quantitative Evidence to Challenge the Traditional Model in Heterogeneous Catalysis: Kinetic Modeling for Ethane Dehydrogenation over Fe/SAPO-34. JACS AU 2023; 3:165-175. [PMID: 36711091 PMCID: PMC9875371 DOI: 10.1021/jacsau.2c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 11/30/2022] [Indexed: 06/18/2023]
Abstract
The production of ethylene from ethane dehydrogenation (EDH) is of great importance in the chemical industry, where zeolites are reported to be promising catalysts and kinetic simulations using the energetics from quantum mechanical calculations might provide an effective approach to speed up the development. However, the kinetic simulations with rigorous considerations of the zeolite environment are not yet advanced. In this work, EDH over Fe/SAPO-34 is investigated using quantum mechanical calculations with kinetic simulations. We show that an excellent agreement between the reaction rates from the self-consistent kinetic simulations using the coverage-dependent kinetic model developed in this work and the experimental ones can be achieved. We demonstrate that the adsorbate-adsorbate interactions are of paramount importance to the accuracy of kinetic calculations for zeolite catalysts. Our self-consistent kinetic calculations illustrate that the CH3CH2• radical rather than CH3CH2* is a favored intermediate. Perhaps more importantly, we reveal that the traditional model to describe catalytic reactions in heterogeneous catalysis cannot be used for the kinetics of the system and it may not be appropriate for many real catalytic systems. This work not only builds a framework for accurate kinetic simulations in zeolites, but also emphasizes an important concept beyond the traditional model.
Collapse
Affiliation(s)
- Peng Chen
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai200237, China
| | - Ying Liu
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai200237, China
| | - Yarong Xu
- Research
Institute of Urumqi Petrochina Chemical Company, Urumqi83000, China
| | - Chenxi Guo
- Department
of 5T Technology, Zhejiang SUPCON Technology
Co., Ltd., Hangzhou310053, China
| | - P. Hu
- Key
Laboratory for Advanced Materials, Centre for Computational Chemistry
and Research Institute of Industrial Catalysis, East China University of Science and Technology, Shanghai200237, China
- School
of Chemistry and Chemical Engineering, The
Queen’s University of Belfast, BelfastBT9 5AG, United Kingdom
| |
Collapse
|
6
|
Ping L, Zhang Y, Wang B, Fan M, Ling L, Zhang R. Unraveling the Surface State Evolution of IrO 2 in Ethane Chemical Looping Oxidative Dehydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lulu Ping
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Lixia Ling
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| |
Collapse
|
7
|
Liu Y, Liu Z, Lu WD, Wang D, Lu AH. In Situ Generated Boron Peroxo as Mild Oxidant in Propane Oxidative Dehydrogenation Revealed by Density Functional Theory Study. J Phys Chem Lett 2022; 13:11729-11735. [PMID: 36512686 DOI: 10.1021/acs.jpclett.2c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Boron-based materials catalyzing oxidative dehydrogenation is emerging as a promising protocol for efficient conversion of light alkanes to olefins, while the origin of its remarkable selectivity remains unclear. By means of density functional theory calculations, this work addresses the crucial role of boron peroxo as the mild oxidant in propane ODH: (1) Surface boron peroxo species can be generated in situ in the presence of peroxo species, preferably at the >B-O-B< sites of the zigzag edge, and show high activity to dehydrogenate propane (ΔG⧧ = 13.5 kcal/mol, ΔG = 8.9 kcal/mol). (2) The >B-O-O· site shows high discriminability of secondary H over primary H of the propane molecule, leading to significantly higher yield of iso-propyl (CH3ĊHCH3) than n-propyl (CH3CH2ĊH2); thus, propene formation is favored over deep oxidation. This provides physical insights into the origin of the remarkable olefin selectivity in the boron-containing ODH catalytic systems.
Collapse
Affiliation(s)
- Yuchen Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ziyi Liu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wen-Duo Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Dongqi Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - An-Hui Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
8
|
The role of monomeric VOx supported on anatase in catalytic dehydrogenation of n-octane assisted by CO2 addition. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Chernyak SA, Corda M, Dath JP, Ordomsky VV, Khodakov AY. Light olefin synthesis from a diversity of renewable and fossil feedstocks: state-of the-art and outlook. Chem Soc Rev 2022; 51:7994-8044. [PMID: 36043509 DOI: 10.1039/d1cs01036k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light olefins are important feedstocks and platform molecules for the chemical industry. Their synthesis has been a research priority in both academia and industry. There are many different approaches to the synthesis of these compounds, which differ by the choice of raw materials, catalysts and reaction conditions. The goals of this review are to highlight the most recent trends in light olefin synthesis and to perform a comparative analysis of different synthetic routes using several quantitative characteristics: selectivity, productivity, severity of operating conditions, stability, technological maturity and sustainability. Traditionally, on an industrial scale, the cracking of oil fractions has been used to produce light olefins. Methanol-to-olefins, alkane direct or oxidative dehydrogenation technologies have great potential in the short term and have already reached scientific and technological maturities. Major progress should be made in the field of methanol-mediated CO and CO2 direct hydrogenation to light olefins. The electrocatalytic reduction of CO2 to light olefins is a very attractive process in the long run due to the low reaction temperature and possible use of sustainable electricity. The application of modern concepts such as electricity-driven process intensification, looping, CO2 management and nanoscale catalyst design should lead in the near future to more environmentally friendly, energy efficient and selective large-scale technologies for light olefin synthesis.
Collapse
Affiliation(s)
- Sergei A Chernyak
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Massimo Corda
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Jean-Pierre Dath
- Direction Recherche & Développement, TotalEnergies SE, TotalEnergies One Tech Belgium, Zone Industrielle Feluy C, B-7181 Seneffe, Belgium
| | - Vitaly V Ordomsky
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| | - Andrei Y Khodakov
- University of Lille, CNRS, Centrale Lille, University of Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France.
| |
Collapse
|
10
|
Promotion role of B doping in N, B co-doped humic acids-based porous carbon for enhancing catalytic performance of oxidative dehydrogenation of propane using CO2. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02251-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
11
|
Zhi S, Lian Z, Si C, Jan F, Yang M, Li B. A critical evaluation of the catalytic role of CO 2 in propane dehydrogenation catalyzed by chromium oxide from a DFT-based microkinetic simulation. Phys Chem Chem Phys 2022; 24:11030-11038. [PMID: 35470840 DOI: 10.1039/d2cp00027j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Propane dehydrogenation under CO2 is an important catalytic route to obtain propene with a good balance between selectivity and stability. However, a precise description of the catalytic role of CO2 in propane dehydrogenation is still absent. In this work, we focus on the elucidation of the role of CO2 by using DFT-based microkinetic simulation. The influence of CO2 is categorized as direct and indirect effects. It was found that the chemisorbed CO2 can directly abstract hydrogen from propane and propyl with a comparable barrier to the counterpart at the surface oxygen site. On the other hand, the dissociation of CO2 yields active surface species of CO* and O* which are actively involved in the removal of surface hydroxyls. It is found that the TOFs of both propane conversion and propene formation are significantly increased with the presence of CO2, which is explained by the reduced apparent activation energy. The primary hydrogen abstraction is identified to be the most influential step from the DRC analysis. The main effects of CO2 are concluded to be removing hydrogen and restoring oxygen vacancies from reaction pathway analysis.
Collapse
Affiliation(s)
- ShuaiKe Zhi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - Zan Lian
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - ChaoWei Si
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - Faheem Jan
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - Min Yang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| | - Bo Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, Liaoning, People's Republic of China. .,School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, Liaoning, People's Republic of China
| |
Collapse
|
12
|
Fonzeu Monguen CK, El Kasmi A, Arshad MF, Kouotou PM, Daniel S, Tian ZY. Oxidative Dehydrogenation of Propane into Propene over Chromium Oxides. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cedric Karel Fonzeu Monguen
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Achraf El Kasmi
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory LSIA UAE/U02ENSAH, ENSAH, Abdelmalek Essaadi University, Tetouan, Morocco
| | - Muhammad Fahad Arshad
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Patrick Mountapmbeme Kouotou
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- National Advanced School of Engineering of Maroua, University of Maroua, P.O. Box 46, Maroua, Cameroon
| | - Samuel Daniel
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Yu Tian
- Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Pineda M, Stamatakis M. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. J Chem Phys 2022; 156:120902. [DOI: 10.1063/5.0083251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetic Monte Carlo (KMC) simulations in combination with first-principles (1p)-based calculations are rapidly becoming the gold-standard computational framework for bridging the gap between the wide range of length scales and time scales over which heterogeneous catalysis unfolds. 1p-KMC simulations provide accurate insights into reactions over surfaces, a vital step toward the rational design of novel catalysts. In this Perspective, we briefly outline basic principles, computational challenges, successful applications, as well as future directions and opportunities of this promising and ever more popular kinetic modeling approach.
Collapse
Affiliation(s)
- M. Pineda
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - M. Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
14
|
Abdelgaid M, Mpourmpakis G. Structure–Activity Relationships in Lewis Acid–Base Heterogeneous Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mona Abdelgaid
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Giannis Mpourmpakis
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
15
|
Lv JY, Ren RP, Lv YK. A theoretical study on the mechanism of conversion of C 3H 8 and CO 2 to C 3H 6 and HCOOH by M 4–B 24N 28 catalysis. NEW J CHEM 2022. [DOI: 10.1039/d2nj00522k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we explored the reaction mechanism of metallic copper-doped modified aperiodic (BN)28 nanocages for the catalytic oxidation of propane with carbon dioxide. The DFT calculation is performed on all possible paths during the reaction process.
Collapse
Affiliation(s)
- Jia-Yuan Lv
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Rui-Peng Ren
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Street, Xiaodian District, Taiyuan, Shanxi, China
| | - Yong-Kang Lv
- Key Laboratory of Coal Science and Technology of Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, 87 Zhengyang Street, Xiaodian District, Taiyuan, Shanxi, China
| |
Collapse
|
16
|
Kumar A, Iyer J, Jalid F, Ramteke M, Khan TS, Haider MA. Machine Learning Enabled Screening of Single Atom Alloys: Predicting Reactivity Trend for Ethanol Dehydrogenation. ChemCatChem 2021. [DOI: 10.1002/cctc.202101481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amrish Kumar
- Renewable Energy and Chemicals Laboratory Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas Delhi 110016 India
| | - Jayendran Iyer
- Renewable Energy and Chemicals Laboratory Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas Delhi 110016 India
| | - Fatima Jalid
- Department of Chemical Engineering National Institute of Technology Srinagar Srinagar Jammu and Kashmir 190006 India
| | - Manojkumar Ramteke
- Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas Delhi 110016 India
| | - Tuhin S. Khan
- Light Stock Processing Division CSIR-Indian Institute of Petroleum Dehradun 248005 India
| | - M. Ali Haider
- Renewable Energy and Chemicals Laboratory Department of Chemical Engineering Indian Institute of Technology Delhi Hauz Khas Delhi 110016 India
| |
Collapse
|